The nature and stability of organic phosphates in leaf litter and soil organic matter in Nigeria

1986 ◽  
Vol 18 (6) ◽  
pp. 643-647 ◽  
Author(s):  
I. Mueller-Harvey ◽  
A. Wild
2007 ◽  
Vol 39 (5) ◽  
pp. 1202-1205 ◽  
Author(s):  
Andrew J. Rawlins ◽  
Ian D. Bull ◽  
Philip Ineson ◽  
Richard P. Evershed

2006 ◽  
Vol 52 (8) ◽  
pp. 701-716 ◽  
Author(s):  
T Osono

The ecology of endophytic and epiphytic phyllosphere fungi of forest trees is reviewed with special emphasis on the development of decomposer fungal communities and decomposition processes of leaf litter. A total of 41 genera of phyllosphere fungi have been reported to occur on leaf litter of tree species in 19 genera. The relative proportion of phyllosphere fungi in decomposer fungal communities ranges from 2% to 100%. Phyllosphere fungi generally disappear in the early stages of decomposition, although a few species persist until the late stages. Phyllosphere fungi have the ability to utilize various organic compounds as carbon sources, and the marked decomposing ability is associated with ligninolytic activity. The role of phyllosphere fungi in the decomposition of soluble components during the early stages is relatively small in spite of their frequent occurrence. Recently, the roles of phyllosphere fungi in the decomposition of structural components have been documented with reference to lignin and cellulose decomposition, nutrient dynamics, and accumulation and decomposition of soil organic matter. It is clear from this review that several of the common phyllosphere fungi of forest trees are primarily saprobic, being specifically adapted to colonize and utilize dead host tissue, and that some phyllosphere fungi with marked abilities to decompose litter components play important roles in decomposition of structural components, nutrient dynamics, and soil organic matter accumulation.Key words: carbon cycle, community, endophyte, epiphyte, succession.


2018 ◽  
Vol 106 (2) ◽  
pp. 502-513 ◽  
Author(s):  
Luke M. Jacobs ◽  
Benjamin N. Sulman ◽  
Edward R. Brzostek ◽  
John J. Feighery ◽  
Richard P. Phillips

1983 ◽  
Vol 13 (1) ◽  
pp. 12-21 ◽  
Author(s):  
Knute J. Nadelhoffer ◽  
John D. Aber ◽  
Jerry M. Melillo

Annual net N mineralization in the 0–10 cm mineral soil zone of nine forest stands on silt–loam soils was measured using a series of insitu soil incubations from April 1980 through April 1981. Differences in soil organic matter (SOM) dynamics among sites were shown with net N mineralization ranging from 0.54 to 2.10 mg N mineralized•g SOM−1•year−1. This variation was not related to percent N in SOM. Net N mineralization varied seasonally with maximum rates in June and very low rates in winter. Nitrification rates were constant from May through September despite fluctuations in soil ammonium pools. Nitrification was greater than 50% of annual net N mineralization at all sites. N uptake by vegetation, as estimated by net N mineralization plus mineral N inputs via precipitation, with minor corrections for mineralization below the incubation depth and for mineral N losses to groundwater, ranged from 40.3 to 119.2 kg N•ha−1•year−1. Annual leaf and needle litter production ranged from 2.12 to 4.17 Mg•ha−1•year−1 and was strongly correlated with N uptake (r = 0.938, P < 0.01). N returned in leaf litter was also correlated with N uptake (r = 0.755, P < 0.05). Important feedbacks may exist between N availability and litter quality and quantity.


1990 ◽  
Vol 68 (4) ◽  
pp. 735-741 ◽  
Author(s):  
Christer Nilsson ◽  
Gunnel Grelsson

The hypotheses that litter deposition on riverbanks would depend on riverbank features and that litter mass would affect riverbank vegetation were tested by sampling vegetation, litter, and soil along a seventh-order stretch of the unregulated Vindel River in northern Sweden. Sampling was carried out within a horizontal litter gradient at the top of the riverbank where most of the litter deposition occurs. The amount of leaf litter left on the riverbank after flooding was significantly correlated (P < 0.05) with soil organic matter. In contrast, wood litter mass and total litter mass were not correlated (P > 0.05) with riverbank features such as soil organic matter, riverbank slope, or stem density. Species richness, species diversity, and the proportions of stemmed and nonstemmed species showed quadratic relationships (P < 0.05) with leaf litter mass, whereas ground vegetation cover decreased monotonically (P < 0.05) with increasing leaf litter mass. Tall, stemmed species were most frequent at eroded sites with low amounts of leaf litter and at sites where leaf litter had accumulated. In contrast, the highest proportion of low-growing species was found at sites with intermediate leaf litter masses. Community characteristics such as species richness, species diversity, and the proportions of stemmed and nonstemmed species (but not ground vegetation cover) were less strongly correlated with wood litter mass and total litter mass. Linear equations explained about half of the variation in ground vegetation cover along gradients of wood and total litter masses. Density and richness of seeds increased with increasing litter mass. We discuss the litter effects in terms of productivity and disturbance and conclude that flooding in pristine rivers may exert a considerable influence on riverbank vegetation as a result of litter displacement.


Sign in / Sign up

Export Citation Format

Share Document