Nitrogen and cation mobilization by soil fauna feeding on leaf litter and soil organic matter from deciduous woodlands

1983 ◽  
Vol 15 (4) ◽  
pp. 463-467 ◽  
Author(s):  
J.M. Anderson ◽  
P. Ineson ◽  
S.A. Huish
2007 ◽  
Vol 39 (5) ◽  
pp. 1202-1205 ◽  
Author(s):  
Andrew J. Rawlins ◽  
Ian D. Bull ◽  
Philip Ineson ◽  
Richard P. Evershed

2019 ◽  
Vol 99 (2) ◽  
pp. 195-207 ◽  
Author(s):  
Yu Tan ◽  
Wanqin Yang ◽  
Xiangyin Ni ◽  
Bo Tan ◽  
Kai Yue ◽  
...  

The formation of soil organic matter via humification of plant litter is important for long-term carbon sequestration in forests; however, whether soil fauna affects litter humification is unclear. In this study, we quantified the effects of soil fauna on the optical properties (i.e., ΔlogK and E4/E6) of the alkaline-extracted humic acid-like solutions of four foliar litters by removing soil fauna via litterbags with different mesh sizes in two subtropical evergreen broad-leaved forests. Litterbags were collected at the leaf falling, budding, expanding, maturation, and senescence stages from November 2013 to October 2015 to assess whether the effects of soil fauna on litter humification vary in different plant phenology periods. The results showed that soil fauna significantly reduced the ΔlogK and E4/E6 values in the leaf expanding stage of oak litter and in the leaf falling stage of camphor and fir litters. The richness index of soil fauna explained 21%, 55%, 19%, and 45% of the variations in the E4/E6 values for oak, fir, camphor, and pine litters, respectively. The effects of litter water content on these optical properties were greater than that of temperature. These results indicated that soil fauna plays a key role in litter humification in the leaf expanding and falling stages and are potentially involved in soil carbon sequestration in these subtropical forests.


2006 ◽  
Vol 52 (8) ◽  
pp. 701-716 ◽  
Author(s):  
T Osono

The ecology of endophytic and epiphytic phyllosphere fungi of forest trees is reviewed with special emphasis on the development of decomposer fungal communities and decomposition processes of leaf litter. A total of 41 genera of phyllosphere fungi have been reported to occur on leaf litter of tree species in 19 genera. The relative proportion of phyllosphere fungi in decomposer fungal communities ranges from 2% to 100%. Phyllosphere fungi generally disappear in the early stages of decomposition, although a few species persist until the late stages. Phyllosphere fungi have the ability to utilize various organic compounds as carbon sources, and the marked decomposing ability is associated with ligninolytic activity. The role of phyllosphere fungi in the decomposition of soluble components during the early stages is relatively small in spite of their frequent occurrence. Recently, the roles of phyllosphere fungi in the decomposition of structural components have been documented with reference to lignin and cellulose decomposition, nutrient dynamics, and accumulation and decomposition of soil organic matter. It is clear from this review that several of the common phyllosphere fungi of forest trees are primarily saprobic, being specifically adapted to colonize and utilize dead host tissue, and that some phyllosphere fungi with marked abilities to decompose litter components play important roles in decomposition of structural components, nutrient dynamics, and soil organic matter accumulation.Key words: carbon cycle, community, endophyte, epiphyte, succession.


2018 ◽  
Vol 106 (2) ◽  
pp. 502-513 ◽  
Author(s):  
Luke M. Jacobs ◽  
Benjamin N. Sulman ◽  
Edward R. Brzostek ◽  
John J. Feighery ◽  
Richard P. Phillips

1983 ◽  
Vol 13 (1) ◽  
pp. 12-21 ◽  
Author(s):  
Knute J. Nadelhoffer ◽  
John D. Aber ◽  
Jerry M. Melillo

Annual net N mineralization in the 0–10 cm mineral soil zone of nine forest stands on silt–loam soils was measured using a series of insitu soil incubations from April 1980 through April 1981. Differences in soil organic matter (SOM) dynamics among sites were shown with net N mineralization ranging from 0.54 to 2.10 mg N mineralized•g SOM−1•year−1. This variation was not related to percent N in SOM. Net N mineralization varied seasonally with maximum rates in June and very low rates in winter. Nitrification rates were constant from May through September despite fluctuations in soil ammonium pools. Nitrification was greater than 50% of annual net N mineralization at all sites. N uptake by vegetation, as estimated by net N mineralization plus mineral N inputs via precipitation, with minor corrections for mineralization below the incubation depth and for mineral N losses to groundwater, ranged from 40.3 to 119.2 kg N•ha−1•year−1. Annual leaf and needle litter production ranged from 2.12 to 4.17 Mg•ha−1•year−1 and was strongly correlated with N uptake (r = 0.938, P < 0.01). N returned in leaf litter was also correlated with N uptake (r = 0.755, P < 0.05). Important feedbacks may exist between N availability and litter quality and quantity.


Sign in / Sign up

Export Citation Format

Share Document