scholarly journals Interactions among decaying leaf litter, root litter and soil organic matter vary with mycorrhizal type

2018 ◽  
Vol 106 (2) ◽  
pp. 502-513 ◽  
Author(s):  
Luke M. Jacobs ◽  
Benjamin N. Sulman ◽  
Edward R. Brzostek ◽  
John J. Feighery ◽  
Richard P. Phillips
2015 ◽  
Vol 391 (1-2) ◽  
pp. 399-411 ◽  
Author(s):  
Wen-Feng Cong ◽  
Ellis Hoffland ◽  
Long Li ◽  
Bert H. Janssen ◽  
Wopke van der Werf

2007 ◽  
Vol 39 (5) ◽  
pp. 1202-1205 ◽  
Author(s):  
Andrew J. Rawlins ◽  
Ian D. Bull ◽  
Philip Ineson ◽  
Richard P. Evershed

2006 ◽  
Vol 52 (8) ◽  
pp. 701-716 ◽  
Author(s):  
T Osono

The ecology of endophytic and epiphytic phyllosphere fungi of forest trees is reviewed with special emphasis on the development of decomposer fungal communities and decomposition processes of leaf litter. A total of 41 genera of phyllosphere fungi have been reported to occur on leaf litter of tree species in 19 genera. The relative proportion of phyllosphere fungi in decomposer fungal communities ranges from 2% to 100%. Phyllosphere fungi generally disappear in the early stages of decomposition, although a few species persist until the late stages. Phyllosphere fungi have the ability to utilize various organic compounds as carbon sources, and the marked decomposing ability is associated with ligninolytic activity. The role of phyllosphere fungi in the decomposition of soluble components during the early stages is relatively small in spite of their frequent occurrence. Recently, the roles of phyllosphere fungi in the decomposition of structural components have been documented with reference to lignin and cellulose decomposition, nutrient dynamics, and accumulation and decomposition of soil organic matter. It is clear from this review that several of the common phyllosphere fungi of forest trees are primarily saprobic, being specifically adapted to colonize and utilize dead host tissue, and that some phyllosphere fungi with marked abilities to decompose litter components play important roles in decomposition of structural components, nutrient dynamics, and soil organic matter accumulation.Key words: carbon cycle, community, endophyte, epiphyte, succession.


2011 ◽  
Vol 8 (4) ◽  
pp. 7257-7312 ◽  
Author(s):  
M. C. Braakhekke ◽  
T. Wutzler ◽  
M. Reichstein ◽  
J. Kattge ◽  
C. Beer ◽  
...  

Abstract. In view of its potential significance for soil organic matter (SOM) cycling, the vertical SOM distribution in the profile should be considered in models. To mechanistically predict the SOM profile, three additional processes should be represented compared to bulk SOM models: (vertically distributed) rhizodeposition, mixing due to bioturbation, and movement with the liquid phase as dissolved organic matter. However, the convolution of these processes complicates parameter estimation based on the vertical SOM distribution alone. Measurements of the atmospherically produced isotope 210Pbex may provide the additional information needed to constrain the processes. Since 210Pbex enters the soil at the surface and bind strongly to organic matter it is an effective tracer for SOM transport. In order to study the importance of root input, bioturbation, and liquid phase transport for SOM profile formation we performed Bayesian parameter estimation of the previously developed mechanistic SOM profile model SOMPROF. 13 parameters, related to decomposition and transport of organic matter, were estimated for the soils of two temperate forests with strongly contrasting SOM profiles: Loobos (the Netherlands) and Hainich (Germany). Measurements of organic carbon stocks and concentrations, decomposition rates, and 210Pbex profiles were used in the optimization. For both sites, 3 optimizations were performed in which stepwise 210Pbex data and prior knowledge were added. The optimizations yielded posterior distributions with several cases (modes) which were characterized by the dominant organic matter (OM) pool: non-leachable slow OM, leachable slow OM, or root litter. For Loobos, the addition of 210Pbex data to the optimization clearly indicated which case was most likely. For Hainich, there is more uncertainty, but the most likely case produced by the optimization agrees well with other measurements. For both sites the most likely case of the final optimization was one where leachable slow OM dominates, suggesting that most organic matter is adsorbed to the mineral phase. Liquid phase transport (advection) of OM was responsible for virtually all organic matter transport for Loobos, while for Hainich bioturbation (diffusion) and liquid phase transport were of comparable magnitude. These results are in good agreement with the differences between the two sites in terms of soil texture and biological activity.


1983 ◽  
Vol 13 (1) ◽  
pp. 12-21 ◽  
Author(s):  
Knute J. Nadelhoffer ◽  
John D. Aber ◽  
Jerry M. Melillo

Annual net N mineralization in the 0–10 cm mineral soil zone of nine forest stands on silt–loam soils was measured using a series of insitu soil incubations from April 1980 through April 1981. Differences in soil organic matter (SOM) dynamics among sites were shown with net N mineralization ranging from 0.54 to 2.10 mg N mineralized•g SOM−1•year−1. This variation was not related to percent N in SOM. Net N mineralization varied seasonally with maximum rates in June and very low rates in winter. Nitrification rates were constant from May through September despite fluctuations in soil ammonium pools. Nitrification was greater than 50% of annual net N mineralization at all sites. N uptake by vegetation, as estimated by net N mineralization plus mineral N inputs via precipitation, with minor corrections for mineralization below the incubation depth and for mineral N losses to groundwater, ranged from 40.3 to 119.2 kg N•ha−1•year−1. Annual leaf and needle litter production ranged from 2.12 to 4.17 Mg•ha−1•year−1 and was strongly correlated with N uptake (r = 0.938, P < 0.01). N returned in leaf litter was also correlated with N uptake (r = 0.755, P < 0.05). Important feedbacks may exist between N availability and litter quality and quantity.


Sign in / Sign up

Export Citation Format

Share Document