Three-dimensional penrose tiling under phason strain field I

1989 ◽  
Vol 71 (1) ◽  
pp. 1-4 ◽  
Author(s):  
J.R. Sun ◽  
X.S. Chen
2017 ◽  
Vol 8 (2) ◽  
pp. 337-347 ◽  
Author(s):  
Jorge Barrios-Muriel ◽  
Francisco Javier Alonso Sánchez ◽  
David Rodríguez Salgado ◽  
Francisco Romero-Sánchez

Abstract. Today there is continuous development of wearable devices in various fields such as sportswear, orthotics and personal gadgets, among others. The design of these devices involves the human body as a support environment. Based on this premise, the development of wearable devices requires an improved understanding of the skin strain field of the body segment during human motion. This paper presents a methodology based on a three dimensional digital image correlation (3D-DIC) system to measure the skin strain field and to estimate anatomical lines with minimum deformation as design criteria for the aforementioned wearable devices. The errors of displacement and strain measurement related to 3-D reconstruction and out-of-plane motion are investigated and the results are acceptable in the case of large deformation. This approach can be an effective tool to improve the design of wearable devices in the clinical orthopaedics and ergonomics fields, where comfort plays a key role in supporting the rehabilitation process.


1999 ◽  
Vol 378 ◽  
pp. 145-166 ◽  
Author(s):  
CHRISTOPHE ELOY ◽  
STÉPHANE LE DIZÈS

The linear stability of Burgers and Lamb–Oseen vortices is addressed when the vortex of circulation Γ and radius δ is subjected to an additional strain field of rate s perpendicular to the vorticity axis. The resulting non-axisymmetric vortex is analysed in the limit of large Reynolds number RΓ=Γ/v and small strain s[Lt ]Γ/δ2 by considering the approximations obtained by Moffatt et al. (1994) and Jiménez et al. (1996) for each case respectively. For both vortices, the TWMS instability (Tsai & Widnall 1976; Moore & Saffman 1975) is shown to be active, i.e. stationary helical Kelvin waves of azimuthal wavenumbers m=1 and m=−1 resonate and are amplified by the external strain in the neighbourhood of critical axial wavenumbers which are computed. The additional effects of diffusion for the Lamb–Oseen vortex and stretching for the Burgers vortex are proved to limit in time the resonance. The transient growth of the helical waves is analysed in detail for the distinguished scaling s∼Γ/ (δ2R1/2Γ). An amplitude equation describing the resonance is obtained and the maximum gain of the wave amplitudes is calculated. The effect of the vorticity profile on the instability characteristic as well as of a time-varying stretching rate are analysed. In particular the stretching rate maximizing the instability is calculated. The results are also discussed in the light of recent observations in experiments and numerical simulations. It is argued that the Kelvin waves resonance mechanism could explain various dynamical behaviours of vortex filaments in turbulence.


2013 ◽  
Vol 114 (2) ◽  
pp. 023511 ◽  
Author(s):  
R. Tanuma ◽  
D. Mori ◽  
I. Kamata ◽  
H. Tsuchida

1973 ◽  
Vol 40 (2) ◽  
pp. 600-605 ◽  
Author(s):  
J. W. Dally ◽  
A. Mulc

Polycarbonate is a polymer which exhibits extreme toughness, a pronounced yield behavior, and the ability to flow extensively prior to fracture. These characteristics coupled with its birefringent properties indicate its suitability as a model material for photoelastic analyses. This study treats the photoplastic response of polycarbonate which has been deformed well beyond the yield point and unloaded. The strain field associated with this permanent deformation is related to the birefringence by the conventional strain-optic law. The birefringence is permanently locked in the polycarbonate models on a molecular scale. The model can be sliced to isolate planes of interest and the method can be applied to study permanent strains in plastically deformed three-dimensional bodies.


2006 ◽  
Vol 526 ◽  
pp. 193-198 ◽  
Author(s):  
Rodrigo Luri ◽  
C.J. Luis-Pérez

In this work, the strain field attained by using a severe plastic deformation (SPD) process called equal channel angular extrusion (ECAE) is studied by the finite element method (FEM). The three-dimensional model with circular section includes shear friction between the part and the die, the material strain hardening behaviour and a rigid-deformable contact between the billet and the die. In the ECAE process the part is extruded through two channels with similar diameter that intersect at an angle. When the extrusion process has been performed, the processed material remains it cross section, so there is not any geometric limitation to achieve the desired plastic strain. There are different ways of processing the material by using the ECAE process; those ways of processing are called routes. In this work two passages of route C have been simulated. Using route C means that the billet has been rotated 180º between each passage. Deformations imparted to the processed material have been calculated and a comparison with experimental results has been carried out.


Sign in / Sign up

Export Citation Format

Share Document