Study of ECAE Process by Using FEM

2006 ◽  
Vol 526 ◽  
pp. 193-198 ◽  
Author(s):  
Rodrigo Luri ◽  
C.J. Luis-Pérez

In this work, the strain field attained by using a severe plastic deformation (SPD) process called equal channel angular extrusion (ECAE) is studied by the finite element method (FEM). The three-dimensional model with circular section includes shear friction between the part and the die, the material strain hardening behaviour and a rigid-deformable contact between the billet and the die. In the ECAE process the part is extruded through two channels with similar diameter that intersect at an angle. When the extrusion process has been performed, the processed material remains it cross section, so there is not any geometric limitation to achieve the desired plastic strain. There are different ways of processing the material by using the ECAE process; those ways of processing are called routes. In this work two passages of route C have been simulated. Using route C means that the billet has been rotated 180º between each passage. Deformations imparted to the processed material have been calculated and a comparison with experimental results has been carried out.

Author(s):  
Yilin Zhang ◽  
Shanfang Huang

Two kinds of three-dimensional model are built to simulate the gas entrainment process through a small break in the horizontal coolant pipe at the bottom of the stratified flow. The results were compared with the two-dimensional simulation results and the experimental data. In terms of the two-phase distribution, the simulation results agree well with the experimental data and show much superiority compared with the two-dimensional model. The results verify the reliability of model building, condition setting and calculating method qualitatively and quantitatively. In general, after gas entrainment, the average velocity over cross section increases obviously, but the mass flow rate decreases contrarily. This is because that void fraction meanwhile reduces the fluid density. In addition, it is found that the larger the void fraction of vapor is, the higher the average discharge velocity of the fracture cross-section fluid is. Besides, with the larger internal and external pressure difference, the gas volume fraction and the flow velocity in the break increase, resulting in the mass flow rate increasing along with them. However, since the critical height increases as well, the total loss amount of liquid in the stable effluent stage decreases, and the time before entrainment becomes shorter.


2014 ◽  
Vol 575 ◽  
pp. 329-336
Author(s):  
Zhi Feng Liu ◽  
Bo Hua Zhang

The problem of variable cross-section beam carrying a moving heavy load is investigated. UG software is used to build a three-dimensional model of the beam. The finite difference method and finite element method are used static analysis for the variable cross-section beam carrying a moving heavy load. The static deformation of the beam guide surface is obtained. Comparing the data of the two method, the feasibility of the method is verified. This paper give a guide surface load curve research method of variable cross-section beam carrying a moving heavy load.


2013 ◽  
Vol 339 ◽  
pp. 515-519
Author(s):  
Lu He ◽  
Lu Zhang ◽  
Jia Yong Chen ◽  
Chu Dong Pan ◽  
Yu Xiang Liu

Shear keys have been widely used to control the damage in abutments and piles during earthquakes. To investigate the dynamic response of bridge girder and traverse shear keys subjected to pounding, a three dimensional model of continuous girder bridge is developed in this study. With the assistance of the finite element method program ANSYS and the package LS-DYNA, the pounding between bridge girder and shear keys is simulated. Subsequently, the stress and displacement responses of the model are analyzed, and the movement characteristics are presented.


2012 ◽  
Vol 594-597 ◽  
pp. 808-811 ◽  
Author(s):  
Yan Hai Wang ◽  
Wei Jiang ◽  
Hong Wang

At present, the finite element method is used to calculate the strength and deformation of the steel transmission pole less. Using ANSYS to model steel transmission pole, loading, analysis, the results show that, the traditional method of strength calculation and finite element analysis results are very close, the traditional method of deformation calculation and finite element analysis results has a certain bias. As long as the establishment of three-dimensional model of the steel transmission pole, the applied load and boundary conditions to meet the actual, finite element analysis can provide a more reliable basis for the design and verification of the steel transmission pole.


1995 ◽  
Vol 117 (4) ◽  
pp. 696-705 ◽  
Author(s):  
Robert R. Hwang ◽  
T. P. Chiang

In this study, an investigation using a three-dimensional numerical model, which treats conservation of mass, momentum, and salinity simultaneously, was carried out to study the character of a vertical forced plume in a uniform cross-stream of stably linear stratified environment. A k-ε turbulence model was used to simulate the turbulent phenomena and close the solving problem. The performance of the three-dimensional model is evaluated by comparison of the numerical results with some available experimental measurements. Results indicate that the numerical computation simulates satisfactorily the plume behavior in a stratified crossflow. The secondary vortex pairs in the cross section induced by the primary one change as the plume flows downstream. This denotes the transformation of entrainment mechanism in stratified crossflow.


1998 ◽  
Vol 29 (3) ◽  
pp. 149-178 ◽  
Author(s):  
Heidi Christiansen Barlebo ◽  
Mary C. Hill ◽  
Dan Rosbjerg ◽  
Karsten Høgh Jensen

A three-dimensional inverse groundwater flow and transport model that fits hydraulic-head and concentration data simultaneously using nonlinear regression is presented and applied to a layered sand and silt groundwater system beneath the Grindsted Landfill in Denmark. The aquifer is composed of rather homogeneous hydrogeologic layers. Two issues common to groundwater flow and transport modelling are investigated: 1) The accuracy of simulated concentrations in the case of calibration with head data alone; and 2) The advantages and disadvantages of using a two-dimensional cross-sectional model instead of a three-dimensional model to simulate contaminant transport when the source is at the land surface Results show that using only hydraulic heads in the nonlinear regression produces a simulated plume that is profoundly different from what is obtained in a calibration using both hydraulic-head and concentration data. The present study provides a well-documented example of the differences that can occur. Representing the system as a two-dimensional cross-section obviously omits some of the system dynamics. It was, however, possible to obtain a simulated plume cross-section that matched the actual plume cross-section well. The two-dimensional model execution times were about a seventh of those for the three-dimensional model, but some difficulties were encountered in representing the spatially variable source concentrations and less precise simulated concentrations were calculated by the two-dimensional model compared to the three-dimensional model. Summed up, the present study indicates that three-dimensional modelling using both hydraulic heads and concentrations in the calibration should be preferred in the considered type of transport studies.


Author(s):  
Ján DIŽO ◽  
Miroslav BLATNICKÝ ◽  
Paweł DROŹDZIEL ◽  
Stanislav SEMENOV ◽  
Evgeny MIKHAILOV ◽  
...  

The lorry frame is the main carrying part of a lorry, composed of several components. These components are connected by joints into one structural unit and it forms the lorry chassis. The contribution of this article is focused on the strength analyses of a backbone frame, which is used on an off-road lorry chassis. Strength analyses are carried out utilising the finite element method. This article presents a created three-dimensional model of the frame and definition of boundary conditions (loads, the definition of degrees of freedom) needed for simulation computations. Results of the numerical calculations are the main parts of this article. Attention is mainly centred on the distribution of stresses of the frame under defined loads and its deformations.


2021 ◽  
Vol 4 (4) ◽  
pp. 341-356
Author(s):  
Grzegorz Chomka ◽  
Michał Kondaszewski

The purpose of thesis was to comprehensively develop the construction project of a long reach compact excavator. Optimal solution was selected and its frames were determined by carrying out classic structural calculations. Then, based on them, a preliminary three-dimensional model was designed in the CAD environment. The prototype was subjected to a series of verification calculations and simulation tests using the finite element method under typical, but also non-standard operating conditions. Then, the structure was optimized and then tested again. Next, technical documentation of the final version was created. In the final part of work, technical and operational parameters of designed compact excavator were summarized and the direction of further actions was determined. The thesis ended with a summary of the observations arose during its implementation.


Vestnik IGEU ◽  
2019 ◽  
pp. 12-23
Author(s):  
V.A. Gorbunov ◽  
N.A. Lonshakov ◽  
I.V. Alekseyev ◽  
M.N. Mechtayeva

A problem to be solved now is determining the hub nodes of hydraulic losses arising during the operation of power plant equipment. Detection of such points directly by measuring devices on the operating equipment is impossible as it is difficult to access many elements of the flow part of the units. Development of digital models of equipment allows simulating these processes and with a high degree of accuracy determining the location of increased hydraulic losses. The aim of this work is to determine the magnitude and localization of hydraulic losses in the control valve of the steam turbine. The analysis of steam turbine valve operation has been carried out based on thermodynamic, hydraulic and mechanical parameters, which are taken directly during the operation of the power plant by standard control and measuring devices. The obtained information was processed by the finite element method in the Ansys and SolidEdge Flow Simulation programs and by three-dimensional modeling in the SolidEdge software package. We have obtained a three-dimensional model of the control valve and determined the fields of pressure, velocity, etc. distribution in the volume of the control valve under different operating conditions by the finite element method. During the processing of the obtained information, we found excessive energy losses of water vapor arising during its throttling in the control valve. Such losses produce a significant effect on the power developed by the turbine pump. During the operation of the drive turbine, the pressure losses of the working medium in the steam distribution system vary in the range of 300–500 kPa (37–62 % of the initial pressure before the control valve). The goal set in the work has been fully achieved. Verification of the developed three-dimensional model was made on the basis of the operational parameters taken during the steam turbine operation. The application of the work results, both for modernizing the existing units and designing new equipment, will increase the efficiency of electric energy production at the power unit of the station.


Sign in / Sign up

Export Citation Format

Share Document