Thermal relaxation of lattice disorder in graphite induced by He+ irradiation

1992 ◽  
Vol 82 (7) ◽  
pp. 569-571 ◽  
Author(s):  
Kazutaka G. Nakamura ◽  
Eiji Asari ◽  
Masahiro Kitajima
Hyomen Kagaku ◽  
1993 ◽  
Vol 14 (5) ◽  
pp. 301-306 ◽  
Author(s):  
Eiji ASARI ◽  
Masahiro KITAJIMA ◽  
Kazutaka G. NAKAMURA ◽  
Takaya KAWABE

2020 ◽  
Vol 92 (3) ◽  
pp. 31101
Author(s):  
Zahoor Iqbal ◽  
Masood Khan ◽  
Awais Ahmed

In this study, an effort is made to model the thermal conduction and mass diffusion phenomena in perspective of Buongiorno’s model and Cattaneo-Christov theory for 2D flow of magnetized Burgers nanofluid due to stretching cylinder. Moreover, the impacts of Joule heating and heat source are also included to investigate the heat flow mechanism. Additionally, mass diffusion process in flow of nanofluid is examined by employing the influence of chemical reaction. Mathematical modelling of momentum, heat and mass diffusion equations is carried out in mathematical formulation section of the manuscript. Homotopy analysis method (HAM) in Wolfram Mathematica is utilized to analyze the effects of physical dimensionless constants on flow, temperature and solutal distributions of Burgers nanofluid. Graphical results are depicted and physically justified in results and discussion section. At the end of the manuscript the section of closing remarks is also included to highlight the main findings of this study. It is revealed that an escalation in thermal relaxation time constant leads to ascend the temperature curves of nanofluid. Additionally, depreciation is assessed in mass diffusion process due to escalating amount of thermophoretic force constant.


2018 ◽  
Author(s):  
Marcus J. Giansiracusa ◽  
Andreas Kostopoulos ◽  
George F. S. Whitehead ◽  
David Collison ◽  
Floriana Tuna ◽  
...  

We report a six coordinate DyIII single-molecule magnet<br>(SMM) with an energy barrier of 1110 K for thermal relaxation of<br>magnetization. The sample shows no retention of magnetization<br>even at 2 K and this led us to find a good correlation between the<br>blocking temperature and the Raman relaxation regime for SMMs.<br>The key parameter is the relaxation time (𝜏<sub>switch</sub>) at the point where<br>the Raman relaxation mechanism becomes more important than<br>Orbach.


2020 ◽  
Vol 75 (12) ◽  
pp. 1077-1084
Author(s):  
Bhawan Jyoti ◽  
Shakti Pratap Singh ◽  
Mohit Gupta ◽  
Sudhanshu Tripathi ◽  
Devraj Singh ◽  
...  

AbstractThe elastic, thermal and ultrasonic properties of zirconium nanowire (Zr-NW) have been investigated at room temperature. The second and third order elastic constants (SOECs and TOECs) of Zr-NW have been figured out using the Lennard–Jones Potential model. SOECs have been used to find out the Young’s modulus, bulk modulus, shear modulus, Poisson’s ratio, Pugh’s ratio, Zener anisotropic factor and ultrasonic velocities. Further these associated parameters of Zr-NW have been utilized for the evaluation of the Grüneisen parameters, thermal conductivity, thermal relaxation time, acoustic coupling constants and ultrasonic attenuation. On the basis of the above analyzed properties of Zr-NW, some characteristics features of the chosen nanowire connected with ultrasonic and thermo-physical parameters have been discussed.


Materials ◽  
2021 ◽  
Vol 14 (2) ◽  
pp. 271
Author(s):  
Jun-Jun Zhai ◽  
Xiang-Xia Kong ◽  
Lu-Chen Wang

A homogenization-based five-step multi-scale finite element (FsMsFE) simulation framework is developed to describe the time-temperature-dependent viscoelastic behavior of 3D braided four-directional composites. The current analysis was performed via three-scale finite element models, the fiber/matrix (microscopic) representative unit cell (RUC) model, the yarn/matrix (mesoscopic) representative unit cell model, and the macroscopic solid model with homogeneous property. Coupling the time-temperature equivalence principle, multi-phase finite element approach, Laplace transformation and Prony series fitting technology, the character of the stress relaxation behaviors at three scales subject to variation in temperature is investigated, and the equivalent time-dependent thermal expansion coefficients (TTEC), the equivalent time-dependent thermal relaxation modulus (TTRM) under micro-scale and meso-scale were predicted. Furthermore, the impacts of temperature, structural parameters and relaxation time on the time-dependent thermo-viscoelastic properties of 3D braided four-directional composites were studied.


Sign in / Sign up

Export Citation Format

Share Document