The determination of energy-level shifts which accompany chemisorption

1976 ◽  
Vol 54 (2) ◽  
pp. 197-209 ◽  
Author(s):  
Homer D Hagstrum
Keyword(s):  
2019 ◽  
Vol 85 (1II)) ◽  
pp. 145-150
Author(s):  
A. S. Cherevko ◽  
A. A. Morozova

The degree and nature of the violation of local thermodynamic equilibrium (LTE) in the analytical zone of a plasma jet generated by an argon arc two-jet plasmatron (TJP) was estimated using an unconventional method based on determination of the nonequilibrium parameterbiequal to the ratio of the experimentally determined actual population of the energy level (ni) of the element to the population of the same level calculated from the Saha equation (nis). Partial ionizing deviation of plasma under study from the equilibrium state takes place only when low-lying atomic levels are overpopulated. The distinct dependence ofbion the ionization potential of the considered element (e.g., Ca, Mg, and Be) is shown. The results were interpreted in the light of the increasing role of radiation processes upon excitation of spectra in the argon arc two-jet plasmatron.


1974 ◽  
Vol 27 (1) ◽  
pp. 13
Author(s):  
DC Peaslee

An investigation is made of the relation between scattering lengths and resonances in a two-nucleon system. For resonances Eo near zero energy the usual determination of an effective optical potential in mesonic atoms is limited, and it is shown here that the scattering length can only be represented usefully as a sum over resonances of the compound system if the condition IEolDI ~ (PDo)! Is satisfied, where D is the average spacing of s-wave states, p the density of target nucleons and Do the Compton volume of the reduced system. This condition is seen to be valid for mr:, nK and KK interactions and these systems are considered in some detail. It is shown that knowledge of the level shifts of each of these examples can help resolve present uncertainties in associated boson structure.


2015 ◽  
Vol 27 (2) ◽  
pp. 562-569 ◽  
Author(s):  
Zafer Hawash ◽  
Luis K. Ono ◽  
Sonia R. Raga ◽  
Michael V. Lee ◽  
Yabing Qi

2000 ◽  
Vol 660 ◽  
Author(s):  
Li Yan ◽  
C.W. Tang ◽  
M. G. Mason ◽  
Yongli Gao

ABSTRACTTris(8-hydroxyquinoline) aluminum (Alq3) based organic light emission diodes (OLED) have been a focus of material research in recent years. One of the key issues in searching for a better device performance and fabricating conditions is suitable electron-injection materials. We have investigated the energy alignment and the interface formation between different metals and Alq3 using X-ray and ultraviolet photoelectron spectroscopy (XPS and UPS). The interface is formed by depositing the target cathode material, such as Ca, Al or Al/LiF, onto an Alq3 film in a stepwise fashion in an ultrahigh vacuum environment. While the UPS results show the work function and vacuum level changes during interfaces formation, implying a possible surface dipole layer, XPS results show a more detailed and complex behavior. When a low work function metal such as Ca is deposited onto an Alq3 surface, a gap state is observed in UPS. At the same time, a new peak can be observed in the N 1s core level at a lower binding energy. These results can be characterized as charge transfer from the low work function metal to Alq3. The shifting of core levels are also observed, which may be explained by doping from metal atoms or charge diffusion. These interfaces are drastically different than the Al/Alq3 interface, which has very poor electron injection. At the Al/Alq3 interface there is a destructive chemical reaction and much smaller core level shifts are observed. Based on detailed analysis, energy level diagrams at the interface are proposed.


Sign in / Sign up

Export Citation Format

Share Document