Sonocleavage of halogens from aliphatic chains and aromatic rings

Tetrahedron ◽  
1965 ◽  
Vol 21 (4) ◽  
pp. 903-908 ◽  
Author(s):  
S. Prakash ◽  
J.D. Pandey
Tetrahedron ◽  
1965 ◽  
Vol 21 (9) ◽  
pp. 2717
Author(s):  
S. Prakash ◽  
J.D. Pandey

2016 ◽  
Vol 61 (4) ◽  
pp. 729-748 ◽  
Author(s):  
Joanna Komorek

Abstract The aim of the study was to compare the internal structure of vitrinite and sporinite obtained from coal from the seam 405. The examinations were performed with the use of infrared spectroscopy in the micro-area (micro-FTIR). Studies have shown that vitrinite is characterized by lower content of aliphatic components and greater content of aromatic components than sporinite. Sporinite is characterized by longer and less branched aliphatic chains than vitrinite. It was found that vitrinite internal structure is characterized by a greater relative content of aromatic than aliphatic components. The degree of condensation of aromatic rings in structure of vitrinite increases, when the coal rank rises. Studies have shown that the transformation of the vitrinite internal structure towards a structure characterized by a greater degree condensation of aromatic components proceeds at the cost of restructuring the aliphatic groups and is related to the restructuring of the aromatic systems. The structure of sporinite is characterized by a greater participation of aliphatic bonds as compared to aromatic bonds. The relative content of the aliphatic components decreases together with increase of aromatic hydrogen functional group CHar content in the internal structure of sporinite when the coal rank rises. The aliphatic bonds in the sporinite are subject to restructuring. The aliphatic chains are getting increasingly shorter.


Author(s):  
H. Ade ◽  
B. Hsiao ◽  
G. Mitchell ◽  
E. Rightor ◽  
A. P. Smith ◽  
...  

We have used the Scanning Transmission X-ray Microscope at beamline X1A (X1-STXM) at Brookhaven National Laboratory (BNL) to acquire high resolution, chemical and orientation sensitive images of polymeric samples as well as point spectra from 0.1 μm areas. This sensitivity is achieved by exploiting the X-ray Absorption Near Edge Structure (XANES) of the carbon K edge. One of the most illustrative example of the chemical sensitivity achievable is provided by images of a polycarbonate/pol(ethylene terephthalate) (70/30 PC/PET) blend. Contrast reversal at high overall contrast is observed between images acquired at 285.36 and 285.69 eV (Fig. 1). Contrast in these images is achieved by exploring subtle differences between resonances associated with the π bonds (sp hybridization) of the aromatic groups of each polymer. PET has a split peak associated with these aromatic groups, due to the proximity of its carbonyl groups to its aromatic rings, whereas PC has only a single peak.


2019 ◽  
Author(s):  
Clare Bakewell ◽  
Martí Garçon ◽  
Richard Y Kong ◽  
Louisa O'Hare ◽  
Andrew J. P. White ◽  
...  

The reactions of an aluminium(I) reagent with a series of 1,2-, 1,3- and 1,5-dienes are reported. In the case of 1,3-dienes the reaction occurs by a pericyclic reaction mechanism, specifically a cheletropic cycloaddition, to form aluminocyclopentene containing products. This mechanism has been interrogated by stereochemical experiments and DFT calculations. The stereochemical experiments show that the (4+1) cycloaddition follows a suprafacial topology, while calculations support a concerted albeit asynchronous pathway in which the transition state demonstrates aromatic character. Remarkably, the substrate scope of the (4+1) cycloaddition includes dienes that are either in part, or entirely, contained within aromatic rings. In these cases, reactions occur with dearomatisation of the substrate and can be reversible. In the case of 1,2- or 1,5-dienes complementary reactivity is observed; the orthogonal nature of the C=C π-bonds (1,2-diene) and the homoconjugated system (1,5-diene) both disfavour a (4+1) cycloaddition. Rather, reaction pathways are determined by an initial (2+1) cycloaddition to form an aluminocyclopropane intermediate which can in turn undergo insertion of a further C=C π-bond leading to complex organometallic products that incorporate fused hydrocarbon rings.


2017 ◽  
Author(s):  
Xueming Dong

Catalytic deoxygenation of coal enhances the stability and combustion performance of coal-derived liquids. However, determination of the selectivity of removal of oxygen atoms incorporated in or residing outside of aromatic rings is challenging. This limits the ability to evaluate the success of catalytic deoxygenation processes. A mass spectrometric method, in-source collision-activated dissociation (ISCAD), combined with high resolution product ion detection, is demonstrated to allow the determination of whether the oxygen atoms in aromatic compounds reside outside of aromatic rings or are part of the aromatic system, because alkyl chains can be removed from aromatic cores via ISCAD. Application of this method for the analysis of a subbituminous coal treated using a supported catalyst revealed that the catalytic treatment reduced the number of oxygen-containing heteroaromatic rings but not the number of oxygen atoms residing outside the aromatic rings.<br>


2017 ◽  
Author(s):  
Xueming Dong

Catalytic deoxygenation of coal enhances the stability and combustion performance of coal-derived liquids. However, determination of the selectivity of removal of oxygen atoms incorporated in or residing outside of aromatic rings is challenging. This limits the ability to evaluate the success of catalytic deoxygenation processes. A mass spectrometric method, in-source collision-activated dissociation (ISCAD), combined with high resolution product ion detection, is demonstrated to allow the determination of whether the oxygen atoms in aromatic compounds reside outside of aromatic rings or are part of the aromatic system, because alkyl chains can be removed from aromatic cores via ISCAD. Application of this method for the analysis of a subbituminous coal treated using a supported catalyst revealed that the catalytic treatment reduced the number of oxygen-containing heteroaromatic rings but not the number of oxygen atoms residing outside the aromatic rings.<br>


2020 ◽  
Author(s):  
Nidhi Gour ◽  
Bharti Koshti

Aggregation of amyloid beeta 1-42 (Aβ<sub>42</sub>) peptide causes the formation of clustered deposits knows as amyloid plaques in the brain which leads to neuronal dysfunction and memory loss and associated with many neurological disorders including Alzheimer’s and Parkinson’s. Aβ<sub>42</sub> has core structural motif with phenylalanine at the 19 and 20 positions. The diphenylalanine (FF) residue plays a crucial role in the formation of amyloid fibers and serves as model peptide for studying Aβ<sub>42 </sub>aggregation. FF self-assembles to well-ordered tubular morphology via aromatic pi-pi stackings. Our studies, suggest that the aromatic rings present in the anti-amyloidogenic compounds may interact with the pi-pi stacking interactions present in the FF. Even the compounds which do not have aromatic rings, like cyclodextrin and cucurbituril show anti-amyloid property due to the binding of aromatic ring inside the guest cavity. Hence, our studies also suggest that compounds which may have a functional moiety capable of interacting with the aromatic stacking interactions might be tested for their anti-amyloidogenic properties. Further, in this manuscript, we have proposed two novel nanoparticle based assays for the rapid screening of amyloid inhibitors. In the first assay, interaction between biotin-tagged FF peptide and the streptavidin labelled gold nanoparticles (s-AuNPs) were used. In another assay, thiol-Au interactions were used to develop an assay for detection of amyloid inhibitors. It is envisaged that the proposed analytical method will provide a simple, facile and cost effective technique for the screening of amyloid inhibitors and may be of immense practical implications to find the therapeutic remedies for the diseases associated with the protein aggregation.


2017 ◽  
Vol 54 (4) ◽  
pp. 655-658
Author(s):  
Andrei Bejan ◽  
Dragos Peptanariu ◽  
Bogdan Chiricuta ◽  
Elena Bicu ◽  
Dalila Belei

Microfibers were obtained from organic low molecular weight compounds based on heteroaromatic and aromatic rings connected by aliphatic spacers. The obtaining of microfibers was proved by scanning electron microscopy. The deciphering of the mechanism of microfiber formation has been elucidated by X-ray diffraction, infrared spectroscopy, and atomic force microscopy measurements. By exciting with light of different wavelength, florescence microscopy revealed a specific optical response, recommending these materials for light sensing applications.


Sign in / Sign up

Export Citation Format

Share Document