High temperature metal-induced crystallization of r.f. sputtered amorphous Si thin films

1976 ◽  
Vol 37 (3) ◽  
pp. 429-440 ◽  
Author(s):  
J.E. Greene ◽  
L. Mei
2013 ◽  
Vol 652-654 ◽  
pp. 1765-1768
Author(s):  
Xiao Lei Qu ◽  
Jing Jin ◽  
Wei Min Shi ◽  
Yu Feng Qiu ◽  
Lu Huang ◽  
...  

A viscous Nickel (Ni) solution was applied on amorphous Si films by spin coating and its effect on the crystallization of amorphous Si films was investigated with a two-step annealing process. The experimental results show that with the help of the two-step annealing, the crystallization of the film can take place at 500oC. At the same time, the crystalline fraction gets up to 79.4% after annealing at a high temperature of 520oC and the grain size of the polycrystalline Si films is approximately 200 nm.


Physica B+C ◽  
1983 ◽  
Vol 117-118 ◽  
pp. 953-955 ◽  
Author(s):  
C.C. Tsai ◽  
R.J. Nemanich ◽  
M.J. Thompson ◽  
B.L. Stafford

2006 ◽  
Vol 100 (5) ◽  
pp. 053515 ◽  
Author(s):  
Mayur S. Valipa ◽  
Saravanapriyan Sriraman ◽  
Eray S. Aydil ◽  
Dimitrios Maroudas

2006 ◽  
Vol 514-516 ◽  
pp. 18-22
Author(s):  
Shibin Zhang ◽  
Z. Hu ◽  
Leandro Raniero ◽  
X. Liao ◽  
Isabel Ferreira ◽  
...  

A series of amorphous silicon carbide films were prepared by plasma enhanced chemical vapor deposition technique on (100) silicon wafers by using methane, silane, and hydrogen as reactive resources. A very thin (around 15 Å) gold film was evaporated on the half area of the a- SiC:H films to investigate the metal induced crystallization effect. Then the a-SiC:H films were annealed at 1100 0C for 1 hour in the nitrogen atmosphere. Fourier transform infrared spectroscopy (FTIR), X-Ray diffraction (XRD), and scanning electron microscopy (SEM) were employed to analyze the microstructure, composition and surface morphology of the films. The influences of the high temperature annealing on the microstructure of a-SiC:H film and the metal induced metallization were investigated.


2001 ◽  
Vol 664 ◽  
Author(s):  
Marek A. T. Izmajlowicz ◽  
Neil A. Morrison ◽  
Andrew J. Flewitt ◽  
William I. Milne

ABSTRACTFor application to active matrix liquid crystal displays (AMLCDs), a low temperature (< 600 °C) process for the production of polycrystalline silicon is required to permit the use of inexpensive glass substrates. This would allow the integration of drive electronics onto the display panel. Current low temperature processes include excimer laser annealing, which requires expensive equipment, and solid phase crystallization, which requires high temperatures. It is known that by adding small amounts of metals such as nickel to the amorphous silicon the solid phase crystallization temperature can be significantly reduced. The rate of this solid phase metal induced crystallization is increased in the presence of an electric field. Previous work on field aided crystallization has reported crystal growth that either proceeds towards the positive terminal or is independent of the direction of the electric field. In this work, extensive investigation has consistently revealed directional crystallization, from the positive to the negative terminal, of amorphous silicon thin films during heat treatment in the presence of an electric field. This is the first time that this phenomenon has been reported. Models have been proposed for metal induced crystallization with and without an applied electric field in which a reaction between Ni and Si to produce NiSi is the rate-limiting step. The crystallization rate is increased in the presence of an electric field through the drift of positive Ni ions.


Sign in / Sign up

Export Citation Format

Share Document