138. Vacuum degassing of low carbon unkilled steel during casting or during solidification into block form. I. Degassing of unkilled soft steel under vacuum.

Vacuum ◽  
1960 ◽  
Vol 10 (3) ◽  
pp. 284
Author(s):  
C.K. Hou ◽  
C.T. Hu ◽  
Sanboh Lee

The fully processed low-carbon electrical steels are generally fabricated through vacuum degassing to reduce the carbon level and to avoid the need for any further decarburization annealing treatment. This investigation was conducted on eighteen heats of such steels with aluminum content ranging from 0.001% to 0.011% which was believed to come from the addition of ferroalloys.The sizes of all the observed grains are less than 24 μm, and gradually decrease as the content of aluminum is increased from 0.001% to 0.007%. For steels with residual aluminum greater than 0. 007%, the average grain size becomes constant and is about 8.8 μm as shown in Fig. 1. When the aluminum is increased, the observed grains are changed from the uniformly coarse and equiaxial shape to the fine size in the region near surfaces and the elongated shape in the central region. SEM and EDAX analysis of large spherical inclusions in the matrix indicate that silicate is the majority compound when the aluminum propotion is less than 0.003%, then the content of aluminum in compound inclusion increases with that in steel.


Author(s):  
Manas Kumar Mondal ◽  
Govind Sharan Gupta ◽  
Shin-ya Kitamura ◽  
Nobuhiro Maruoka

Recently, the demand of the steel having superior chemical and physical properties has increased for which the content of carbon must be in ultra low range. There are many processes which can produce low carbon steel such as tank degasser and RH (Rheinstahl-Heraeus) processes. It has been claimed that using a new process, called REDA (Revolutionary Degassing Activator), one can achieve the carbon content below 10ppm in less time. REDA process, in terms of installment cost, is in between the tank degasser and RH processes. As such, REDA process has not been studied thoroughly. Fluid flow phenomena affect the decarburization rate the most besides the chemical reaction rate. Therefore, momentum balance equations along with k-? turbulent model have been solved for gas and liquid phases in two-dimension (2D) for REDA process. The fluid flow phenomena have been studied in details for this process by varying gas flow rate, depth of immersed snorkel in the steel, diameter of the snorkel and change in vacuum pressure. It is found that the design of the snorkel affects the melt circulation of the bath significantly.


10.30544/76 ◽  
2015 ◽  
Vol 21 (3) ◽  
pp. 143-154
Author(s):  
Z. Slović ◽  
Lj. Nedeljković ◽  
K. Raić ◽  
S. Dević

This work presents the industrial results of sulfur level prediction at the end of vacuum degassing (VD) of low carbon Al-Si killed steels. The effect of plant conditions, such as slag chemistry, temperature, oxygen levels of the molten steel, and slag weight on desulphurization was investigated based on the measured results and thermodynamic calculations. The variables which influence steel desulfurization such as the sulfur capacity, the initial sulfur content, and the amount of ladle slag at the end of the VD process are also defined. The desulfurization procedure was numerically analyzed using the results of 31 heats under real plant conditions in which the measured final sulfur content had been reduced to less than of 10 ppm. A method for prediction of the slag amount based on the material balance of sulfur and aluminum is also presented. The values of the sulfur capacity were determined according to the well-known KTH and optical basicity based models. The obtained results of the regression equation show a predictive final sulfur level ability of R=0.911. This was proved as satisfactory.


2020 ◽  
Vol 989 ◽  
pp. 381-387
Author(s):  
Vlasta D. Tutarova ◽  
Alexey N. Shapovalov ◽  
Alexander N. Kalitaev

This article discusses the problems of efficient removal of nitrogen in the vacuum tank degasser operating at the electric arc furnace shop of Uralskaya Stal (Ural Steel) OJSC in the course of manufacturing of high-quality low carbon steel grades by means of steel grades «2» and «T». In order to determine the reasonable and balanced treatment parameters that ensure the required level of nitrogen content in the above steel grades, an analysis of production data for the period of November-December 2016 has been carried out. This analysis is the basis for identifying the vacuum degassing parameters in compliance with the technological capabilities and well-balanced levels, which allow predicting the level of nitrogen content in steel. To assess the cumulative quantitative effect of the main parameters of vacuum degassing on nitrogen removal, there has been performed a regression analysis. As a result, there have been obtained multiple regression equations describing a rational combination of steel treatment parameters for achieving the required nitrogen removal level.


Author(s):  
G. M. Greene ◽  
J. W. Sprys

The present study demonstrates that fracture surfaces appear strikingly different when observed in the transmission electron microscope by replication and in the scanning electron microscope by backscattering and secondary emission. It is important to know what form these differences take because of the limitations of each instrument. Replication is useful for study of surfaces too large for insertion into the S.E.M. and for resolution of fine detail at high magnification with the T.E.M. Scanning microscopy reduces sample preparation time and allows large sections of the actual surface to be viewed.In the present investigation various modes of the S.E.M. along with the transmission mode in the T.E.M. were used to study one area of a fatigue surface of a low carbon steel. Following transmission study of a platinum carbon replica in the T.E.M. and S.E.M. the replica was coated with a gold layer approximately 200A° in thickness to improve electron emission.


Sign in / Sign up

Export Citation Format

Share Document