scholarly journals A large ultrahigh-vacuum environmental chamber with liquid helium cooled walls

Vacuum ◽  
1966 ◽  
Vol 16 (4) ◽  
pp. 221
Author(s):  
R. E. Worsham ◽  
J. E. Mann ◽  
E. G. Richardson

This superconducting microscope, Figure 1, was first operated in May, 1970. The column, which started life as a Siemens Elmiskop I, was modified by removing the objective and intermediate lenses, the specimen chamber, and the complete vacuum system. The large cryostat contains the objective lens and stage. They are attached to the bottom of the 7-liter helium vessel and are surrounded by two vapor-cooled radiation shields.In the initial operational period 5-mm and 2-mm focal length objective lens pole pieces were used giving magnification up to 45000X. Without a stigmator and precision ground pole pieces, a resolution of about 50-100Å was achieved. The boil-off rate of the liquid helium was reduced to 0.2-0.3ℓ/hour after elimination of thermal oscillations in the cryostat. The calculated boil-off was 0.2ℓ/hour. No effect caused by mechanical or electrical instability was found. Both 4.2°K and 1.7-1.9°K operation were routine. Flux pump excitation and control of the lens were quite smooth, simple, and, apparently highly stable. Alignment of the objective lens proved quite awkward, however, with the long-thin epoxy glass posts used for supporting the lens.


Author(s):  
D.R. Hill ◽  
J.R. McCurry ◽  
L.P. Elliott ◽  
G. Howard

Germination of Euonymous americanus in the laboratory has previously been unsuccessful. Ability to germinate Euonymous americanus. commonly known as the american strawberry bush, is important in that it represents a valuable food source for the white-tailed deer. Utilizing the knowledge that its seeds spend a period of time in the rumin fluid of deer during their dormant stage, we were successful in initiating germination. After a three month drying period, the seeds were placed in 25 ml of buffered rumin fluid, pH 8 at 40°C for 48 hrs anaerobically. They were then allowed to dry at room temperature for 24 hrs, placed on moistened filter paper and enclosed within an environmental chamber. Approximately four weeks later germination was detected and verified by scanning electron microscopy; light microscopy provided inadequate resolution. An important point to note in this procedure is that scarification, which was thought to be vital for germination, proved to be unnecessary for successful germination to occur. It is believed that germination was propagated by the secretion of enzymes or prescence of acids produced by microorganisms found in the rumin fluid since sterilized rumin failed to bring about germination.


Author(s):  
M.K. Lamvik ◽  
D.A. Kopf ◽  
S.D. Davilla ◽  
J.D. Robertson

Last year we reported1 that there is a striking reduction in the rate of mass loss when a specimen is observed at liquid helium temperature. It is important to determine whether liquid helium temperature is significantly better than liquid nitrogen temperature. This requires a good understanding of mass loss effects in cold stages around 100K.


Author(s):  
D. Barnard ◽  
D. Rexford ◽  
W.F. Tivol ◽  
J.N. Turner

A side-entry differentially pumped environmental chamber (SEDPEC) has been designed and constructed for the AEI-EM7 high-voltage electron microscope (HVEM). The SEDPEC has been tested in the same way as previous chambers for the HVEM. In contrast to the lengthy procedures necessary to install previous environmental chambers in the HVEM, the SEDPEC can be installed in about one half hour. Thus a user can install the SEDPEC, use it for a day and return the HVEM to normal operating status without causing delays for other HVEM users. This is particularly important for our facility, which is supported as a national biotechnology resource by the NIH.


Sign in / Sign up

Export Citation Format

Share Document