A Superconducting Microscope

Author(s):  
R. E. Worsham ◽  
J. E. Mann ◽  
E. G. Richardson

This superconducting microscope, Figure 1, was first operated in May, 1970. The column, which started life as a Siemens Elmiskop I, was modified by removing the objective and intermediate lenses, the specimen chamber, and the complete vacuum system. The large cryostat contains the objective lens and stage. They are attached to the bottom of the 7-liter helium vessel and are surrounded by two vapor-cooled radiation shields.In the initial operational period 5-mm and 2-mm focal length objective lens pole pieces were used giving magnification up to 45000X. Without a stigmator and precision ground pole pieces, a resolution of about 50-100Å was achieved. The boil-off rate of the liquid helium was reduced to 0.2-0.3ℓ/hour after elimination of thermal oscillations in the cryostat. The calculated boil-off was 0.2ℓ/hour. No effect caused by mechanical or electrical instability was found. Both 4.2°K and 1.7-1.9°K operation were routine. Flux pump excitation and control of the lens were quite smooth, simple, and, apparently highly stable. Alignment of the objective lens proved quite awkward, however, with the long-thin epoxy glass posts used for supporting the lens.

Author(s):  
R. E. Worsham ◽  
J. E. Mann ◽  
E. G. Richardson ◽  
N. F. Ziegler

Two elements in the chain of development for a 500 kV high resolution microscope have been completed for initial experimental evaluation. They are a conversion of a Siemens Elmiskop I to use a superconducting objective lens and a 150 kV precisely regulated accelerating supply.The superconducting microscope, shown in Fig. 2 is designed as an optical bench for proving the cryostat, lenses, stage mechanism, and other parts prior to the design of a superconducting column for 500 keV. The lens as shown in Figs. 1 and 2 mounts on the removable bottom plate of the 7-liter helium vessel. The vessel is supported and can be clamped rigidly by the four sets of G-10 epoxy-glass posts. Radiation Shields I and II are concentric with the helium vessel. They are cooled by the boil-off helium vapor to about 30 and 130°K, respectively. All electrical leads are carried into the helium vessel through the four symmetrically located vents. Cooldowns from 77°K requires about 30 liters of liquid helium and the boil-off rate is 0.3-0.5 1/HR at either 4.2 or ∼ 1.8°K.


Author(s):  
R. E. Worsham ◽  
J. E. Mann

In the design of the 150 kV High-Coherence Column, it was considered essential that the specimen be in ultra-high vacuum at liquid helium temperature for minimum radiation damage. It followed that the simplest solution was to make the entire region about the specimen at liquid helium temperature and to make the objective lens with a superconducting winding.For mechanical rigidity, two things were considered essential. First, a strong support structure for the liquid helium vessel and the objective lens. Second, the use of no liquid nitrogen but rather the use of helium vapor cooling for the radiation shields, leads and supports. The drawing, fig. 1, shows the helium vessel, 9-1/2-inches diameter by 5-inches tall, surrounded by two concentric radiation shields. The entire assembly is rigidly supported on four posts one of which is shown. These posts consist of cylinders of epoxyglass (G-10) spacing the components between their different temperatures.


Author(s):  
J. S. Lally ◽  
R. Evans

One of the instrumental factors often limiting the resolution of the electron microscope is image defocussing due to changes in accelerating voltage or objective lens current. This factor is particularly important in high voltage electron microscopes both because of the higher voltages and lens currents required but also because of the inherently longer focal lengths, i.e. 6 mm in contrast to 1.5-2.2 mm for modern short focal length objectives.The usual practice in commercial electron microscopes is to design separately stabilized accelerating voltage and lens supplies. In this case chromatic aberration in the image is caused by the random and independent fluctuations of both the high voltage and objective lens current.


Author(s):  
Chester J. Calbick ◽  
Richard E. Hartman

Quantitative studies of the phenomenon associated with reactions induced by the electron beam between specimens and gases present in the electron microscope require precise knowledge and control of the local environment experienced by the portion of the specimen in the electron beam. Because of outgassing phenomena, the environment at the irradiated portion of the specimen is very different from that in any place where gas pressures and compositions can be measured. We have found that differential pumping of the specimen chamber by a 4" Orb-Ion pump, following roughing by a zeolite sorption pump, can produce a specimen-chamber pressure 100- to 1000-fold less than that in the region below the objective lens.


Author(s):  
Richard L. McConville

A second generation twin lens has been developed. This symmetrical lens with a wider bore, yet superior values of chromatic and spherical aberration for a given focal length, retains both eucentric ± 60° tilt movement and 20°x ray detector take-off angle at 90° to the tilt axis. Adjust able tilt axis height, as well as specimen height, now ensures almost invariant objective lens strengths for both TEM (parallel beam conditions) and STEM or nano probe (focused small probe) modes.These modes are selected through use of an auxiliary lens situ ated above the objective. When this lens is on the specimen is illuminated with a parallel beam of electrons, and when it is off the specimen is illuminated with a focused probe of dimensions governed by the excitation of the condenser 1 lens. Thus TEM/STEM operation is controlled by a lens which is independent of the objective lens field strength.


Author(s):  
David A. Ansley

The coherence of the electron flux of a transmission electron microscope (TEM) limits the direct application of deconvolution techniques which have been used successfully on unmanned spacecraft programs. The theory assumes noncoherent illumination. Deconvolution of a TEM micrograph will, therefore, in general produce spurious detail rather than improved resolution.A primary goal of our research is to study the performance of several types of linear spatial filters as a function of specimen contrast, phase, and coherence. We have, therefore, developed a one-dimensional analysis and plotting program to simulate a wide 'range of operating conditions of the TEM, including adjustment of the:(1) Specimen amplitude, phase, and separation(2) Illumination wavelength, half-angle, and tilt(3) Objective lens focal length and aperture width(4) Spherical aberration, defocus, and chromatic aberration focus shift(5) Detector gamma, additive, and multiplicative noise constants(6) Type of spatial filter: linear cosine, linear sine, or deterministic


Author(s):  
Uwe Lücken ◽  
Michael Felsmann ◽  
Wim M. Busing ◽  
Frank de Jong

A new microscope for the study of life science specimen has been developed. Special attention has been given to the problems of unstained samples, cryo-specimens and x-ray analysis at low concentrations.A new objective lens with a Cs of 6.2 mm and a focal length of 5.9 mm for high-contrast imaging has been developed. The contrast of a TWIN lens (f = 2.8 mm, Cs = 2 mm) and the BioTWTN are compared at the level of mean and SD of slow scan CCD images. Figure 1a shows 500 +/- 150 and Fig. 1b only 500 +/- 40 counts/pixel. The contrast-forming mechanism for amplitude contrast is dependent on the wavelength, the objective aperture and the focal length. For similar image conditions (same voltage, same objective aperture) the BioTWIN shows more than double the contrast of the TWIN lens. For phasecontrast specimens (like thin frozen-hydrated films) the contrast at Scherzer focus is approximately proportional to the √ Cs.


Author(s):  
Reyhane Mokhtarname ◽  
Ali Akbar Safavi ◽  
Leonhard Urbas ◽  
Fabienne Salimi ◽  
Mohammad M Zerafat ◽  
...  

Dynamic model development and control of an existing operating industrial continuous bulk free radical styrene polymerization process are carried out to evaluate the performance of auto-refrigerated CSTRs (continuous stirred tank reactors). One of the most difficult tasks in polymerization processes is to control the high viscosity reactor contents and heat removal. In this study, temperature control of an auto-refrigerated CSTR is carried out using an alternative control scheme which makes use of a vacuum system connected to the condenser and has not been addressed in the literature (i.e. to the best of our knowledge). The developed model is then verified using some experimental data of the real operating plant. To show the heat removal potential of this control scheme, a common control strategy used in some previous studies is also simulated. Simulation results show a faster dynamics and superior performance of the first control scheme which is already implemented in our operating plant. Besides, a nonlinear model predictive control (NMPC) is developed for the polymerization process under study to provide a better temperature control while satisfying the input/output and the heat exchanger capacity constraints on the heat removal. Then, a comparison has been also made with the conventional proportional-integral (PI) controller utilizing some common tuning rules. Some robustness and stability analyses of the control schemes investigated are also provided through some simulations. Simulation results clearly show the superiority of the NMPC strategy from all aspects.


Sign in / Sign up

Export Citation Format

Share Document