Characterization of deoxyribonucleic acid isolated from the granulosis viruses of the cabbage looper, Trichoplusia ni and the fall armyworm, Spodoptera frugiperda

Virology ◽  
1972 ◽  
Vol 50 (2) ◽  
pp. 459-471 ◽  
Author(s):  
Max D. Summers ◽  
David L. Anderson
2021 ◽  
Author(s):  
Ingrid Zanella-Saenz ◽  
Elisabeth A. Herniou ◽  
Jorge E. Ibarra ◽  
Ma.Cristina Del Rincón-Castro ◽  
Ilse Alejandra Huerta-Arredondo

Abstract Fall armyworm (FAW), Spodoptera frugiperda (Smith, 1797), is a polyphagous, voracious, and economically important agricultural pest. Biological control of FAW is a strategy that must be further explored. This study evaluated six baculovirus strains isolated from infected FAW larvae from Mexico, Argentina, Honduras, and the United States. Five alphabaculoviruses (SfNPV-An2, SfNPV-Arg, SfNPV-Fx, SfNPV-Ho and SfNPV-Sin) and one betabaculovirus (SfGV-RV), were tested against FAW larvae, showing a wide diversity of virulence levels among strains when their estimated LC50s were compared, being SfNPVArg, SfNPV-Ho and SfNPV-Fx more virulent than SfNPV-An 2 , SfNPV-Sin and SfGV-RV. To determine any virulence difference in vitro studies of these isolates, Sf9 cell cultures were used. Interestingly, only ODVs from four of the test SfNPV strains showed infectivity on Sf9 cell cultures, and some differences in virulence were observed. Genomic restriction analyses and partial sequences of lef-8, lef-9 , and polh/granulin genes showed little variability among alphabaculoviruses, both, among them and with previously reported sequences. However, sequences from SfGV-RV were closer to previously reported sequences from the SfGVVG008 strain than the SfGV-Arg and SfGV-VG014 strains. The great difference in the in vivo virulence was not correlated with great similarity among the isolates. The characterization of these six baculoviruses isolates offers the basis for exploring their potential as biological control agents against S. frugiperda, as well the initial studies on their specific infection mechanisms, evolution, and ecology.


2006 ◽  
Vol 73 (3) ◽  
pp. 956-961 ◽  
Author(s):  
Jun Fang ◽  
Xiaoli Xu ◽  
Ping Wang ◽  
Jian-Zhou Zhao ◽  
Anthony M. Shelton ◽  
...  

ABSTRACT Bacillus thuringiensis vegetative insecticidal proteins (Vip) are potential alternatives for B. thuringiensis endotoxins that are currently utilized in commercial transgenic insect-resistant crops. Screening a large number of B. thuringiensis isolates resulted in the cloning of vip3Ac1. Vip3Ac1 showed high insecticidal activity against the fall armyworm Spodoptera frugiperda and the cotton bollworm Helicoverpa zea but very low activity against the silkworm Bombyx mori. The host specificity of this Vip3 toxin was altered by sequence swapping with a previously identified toxin, Vip3Aa1. While both Vip3Aa1 and Vip3Ac1 showed no detectable toxicity against the European corn borer Ostrinia nubilalis, the chimeric protein Vip3AcAa, consisting of the N-terminal region of Vip3Ac1 and the C-terminal region of Vip3Aa1, became insecticidal to the European corn borer. In addition, the chimeric Vip3AcAa had increased toxicity to the fall armyworm. Furthermore, both Vip3Ac1 and Vip3AcAa are highly insecticidal to a strain of cabbage looper (Trichoplusia ni) that is highly resistant to the B. thuringiensis endotoxin Cry1Ac, thus experimentally showing for the first time the lack of cross-resistance between B. thuringiensis Cry1A proteins and Vip3A toxins. The results in this study demonstrated that vip3Ac1 and its chimeric vip3 genes can be excellent candidates for engineering a new generation of transgenic plants for insect pest control.


2011 ◽  
Vol 2 (1) ◽  
pp. 4
Author(s):  
Jianhao Ke ◽  
Jinwen Wang ◽  
Riqiang Deng ◽  
Lin Lin ◽  
Bei Jinlong ◽  
...  

<p>ORF69 (Ac69) of <em>Autographa californica</em> multiple nucleopolyhedrovirus (Ac<em>M</em>NPV) is conserved in some baculovirus genomes. Although it has been shown that Ac69 has cap 0-dependent methyltransferase activity and is not required for budded virus production in <em>Spodoptera frugiperda</em> Sf-9 cells, its role in occlusion-derived virus synthesis and virus oral infectivity is not known. This paper describes generation of an <em>ac69</em> knockout Ac<em>M</em>NPV bacmid mutant and analyses of the influence of <em>ac69</em> deletion on the viral infectivity in Sf-9 cells and <em>Trichoplusia ni</em> larvae so as to investigate the role of <em>ac69 in the viral life cycle. Results indicated that ac69</em> deletion has little effect on the production rates and morphogenesis of budded virus and occlusion-derived virus in Sf-9 cells. In addition, animal experiment revealed that the deletion mutant did not affect Ac<em>M</em>NPV infectivity for <em>Trichoplusia ni</em> larvae in LD<sub>50</sub> and LT<sub>50</sub> bioassay when administered orally. These results suggest that <em>ac69</em> may be dispensable for viral infectivity both in vitro and in vivo.</p>


2008 ◽  
Vol 43 (4) ◽  
pp. 513-520 ◽  
Author(s):  
Andréa Almeida Carneiro ◽  
Eliane Aparecida Gomes ◽  
Claudia Teixeira Guimarães ◽  
Fernando Tavares Fernandes ◽  
Newton Portilho Carneiro ◽  
...  

The objective of this work was to evaluate the pathogenicity of 24 Beauveria isolates to Spodoptera frugiperda larvae, and characterize them molecularly through rDNA-ITS sequencing and RAPD markers. Sequencing of rDNA-ITS fragments of 570 bp allowed the identification of isolates as B. bassiana or B. brongniarti by sequence comparison to GenBank. Sixty seven polymorphic RAPD fragments were capable to differentiate 20 among 24 Beauveria isolates, grouping them according to the derived host insect and to pathogenicity against maize fall armyworm larvae. Three RAPD markers were highly associated to the pathogenicity against S. frugiperda, explaining up to 67% of the phenotypic variation. Besides identification and molecular characterization of Beauveria isolates, ITS sequence and RAPD markers proved to be very useful in selecting the isolates potentially effective against S. frugiperda larvae and in monitoring field release of these microorganisms in biocontrol programs.


2004 ◽  
Vol 122 (2) ◽  
pp. 69-78 ◽  
Author(s):  
Mohatmed Abdel-latief ◽  
Martina Meyering-Vos ◽  
Klaus H. Hoffmann

Insects ◽  
2020 ◽  
Vol 11 (11) ◽  
pp. 777
Author(s):  
Chengfeng Lei ◽  
Jian Yang ◽  
Jia Wang ◽  
Jia Hu ◽  
Xiulian Sun

The fall armyworm, Spodoptera frugiperda, is a new invading pest in China. The baculovirus Spodoptera frugiperda multiple nucleopolyhedrovirus (SfMNPV) is a pathogenic agent of the fall armyworm and a potential agent for its control in integrated pest management strategies. In this work, we analyze the molecular and biological characteristics of an SfMNPV isolate collected from maize in China (SfMNPV-Hub). Two genotypes were further isolated from SfMNPV-Hub by an in vivo cloning method. The PstI profile of one genotype (SfHub-A) was similar to genotype A of the SfMNPV Colombian isolate, and the other (SfHub-E) was similar to genotype E of the Colombian isolate. The bioactivity of SfHub-A against second-instar S. frugiperda larvae was not significantly different from that of SfMNPV-Hub, whereas SfHub-E was 2.7–5.5 fold less potent than SfMNPV-Hub. The speed of kill of SfHub-E was quicker than SfMNPV-Hub, while SfHub-A acted slower than SfMNPV-Hub. Occlusion body (OB) production of SfHub-A in an S. frugiperda cadaver was significantly higher than that of SfMNPV-Hub, while SfHub-E yielded far fewer occlusion bodies (OBs) in the host larvae. These results provide basic information for developing a virus-based pesticide against the invading pest S. frugiperda.


2021 ◽  
Author(s):  
Sakthivel Ramesh Babu ◽  
Perumal Pachippan ◽  
Raja Manoharan ◽  
Sonika Joshi ◽  
Deepika Kalyan ◽  
...  

Abstract The fall armyworm (FAW), Spodoptera frugiperda (J.E. Smith) is a polyphagous Lepidopteran pest, a native to tropical and sub-tropical America and recently it has invaded the African and Asian countries. Presently, the mitochondrial Cytochrome Oxidase Subunit I (COI) - gene based molecular characterization of FAW samples from the maize fields of southern Rajasthan has revealed the occurrence of corn and rice strains there. The occurrence of such S. frugiperda population of Rajasthan region could be traced its origin from the Florida-Caribbean region or African region. Further, the Tpi gene region analysis showed that the S.frugiperda forms found in the maize fields are only the corn strains. In the Indian Rajasthan populations of FAW, the Tpi-variant2 category is the highest one and is then followed by the Tpi-variant1 and Tpi-variant3 was unique with C and T at Tpie4192 and Tpie4198, respectively. Further research is needed towards the confirmation of these tentatively identified strains of S. frugiperda that would in turn helpful for the proper monitoring, host-plant identification and the effective management of such pests.


Sign in / Sign up

Export Citation Format

Share Document