scholarly journals Characterization of AcMNPV with a deletion of ac69 gene

2011 ◽  
Vol 2 (1) ◽  
pp. 4
Author(s):  
Jianhao Ke ◽  
Jinwen Wang ◽  
Riqiang Deng ◽  
Lin Lin ◽  
Bei Jinlong ◽  
...  

<p>ORF69 (Ac69) of <em>Autographa californica</em> multiple nucleopolyhedrovirus (Ac<em>M</em>NPV) is conserved in some baculovirus genomes. Although it has been shown that Ac69 has cap 0-dependent methyltransferase activity and is not required for budded virus production in <em>Spodoptera frugiperda</em> Sf-9 cells, its role in occlusion-derived virus synthesis and virus oral infectivity is not known. This paper describes generation of an <em>ac69</em> knockout Ac<em>M</em>NPV bacmid mutant and analyses of the influence of <em>ac69</em> deletion on the viral infectivity in Sf-9 cells and <em>Trichoplusia ni</em> larvae so as to investigate the role of <em>ac69 in the viral life cycle. Results indicated that ac69</em> deletion has little effect on the production rates and morphogenesis of budded virus and occlusion-derived virus in Sf-9 cells. In addition, animal experiment revealed that the deletion mutant did not affect Ac<em>M</em>NPV infectivity for <em>Trichoplusia ni</em> larvae in LD<sub>50</sub> and LT<sub>50</sub> bioassay when administered orally. These results suggest that <em>ac69</em> may be dispensable for viral infectivity both in vitro and in vivo.</p>

2021 ◽  
Author(s):  
Ingrid Zanella-Saenz ◽  
Elisabeth A. Herniou ◽  
Jorge E. Ibarra ◽  
Ma.Cristina Del Rincón-Castro ◽  
Ilse Alejandra Huerta-Arredondo

Abstract Fall armyworm (FAW), Spodoptera frugiperda (Smith, 1797), is a polyphagous, voracious, and economically important agricultural pest. Biological control of FAW is a strategy that must be further explored. This study evaluated six baculovirus strains isolated from infected FAW larvae from Mexico, Argentina, Honduras, and the United States. Five alphabaculoviruses (SfNPV-An2, SfNPV-Arg, SfNPV-Fx, SfNPV-Ho and SfNPV-Sin) and one betabaculovirus (SfGV-RV), were tested against FAW larvae, showing a wide diversity of virulence levels among strains when their estimated LC50s were compared, being SfNPVArg, SfNPV-Ho and SfNPV-Fx more virulent than SfNPV-An 2 , SfNPV-Sin and SfGV-RV. To determine any virulence difference in vitro studies of these isolates, Sf9 cell cultures were used. Interestingly, only ODVs from four of the test SfNPV strains showed infectivity on Sf9 cell cultures, and some differences in virulence were observed. Genomic restriction analyses and partial sequences of lef-8, lef-9 , and polh/granulin genes showed little variability among alphabaculoviruses, both, among them and with previously reported sequences. However, sequences from SfGV-RV were closer to previously reported sequences from the SfGVVG008 strain than the SfGV-Arg and SfGV-VG014 strains. The great difference in the in vivo virulence was not correlated with great similarity among the isolates. The characterization of these six baculoviruses isolates offers the basis for exploring their potential as biological control agents against S. frugiperda, as well the initial studies on their specific infection mechanisms, evolution, and ecology.


2019 ◽  
Vol 476 (10) ◽  
pp. 1521-1537 ◽  
Author(s):  
Emma J. Goldberg ◽  
Katherine A. Buddo ◽  
Kelsey L. McLaughlin ◽  
Regina F. Fernandez ◽  
Andrea S. Pereyra ◽  
...  

Abstract Alterations to branched-chain keto acid (BCKA) oxidation have been implicated in a wide variety of human diseases, ranging from diabetes to cancer. Although global shifts in BCKA metabolism—evident by gene transcription, metabolite profiling, and in vivo flux analyses have been documented across various pathological conditions, the underlying biochemical mechanism(s) within the mitochondrion remain largely unknown. In vitro experiments using isolated mitochondria represent a powerful biochemical tool for elucidating the role of the mitochondrion in driving disease. Such analyses have routinely been utilized across disciplines to shed valuable insight into mitochondrial-linked pathologies. That said, few studies have attempted to model in vitro BCKA oxidation in isolated organelles. The impetus for the present study stemmed from the knowledge that complete oxidation of each of the three BCKAs involves a reaction dependent upon bicarbonate and ATP, both of which are not typically included in respiration experiments. Based on this, it was hypothesized that the inclusion of exogenous bicarbonate and stimulation of respiration using physiological shifts in ATP-free energy, rather than excess ADP, would allow for maximal BCKA-supported respiratory flux in isolated mitochondria. This hypothesis was confirmed in mitochondria from several mouse tissues, including heart, liver and skeletal muscle. What follows is a thorough characterization and validation of a novel biochemical tool for investigating BCKA metabolism in isolated mitochondria.


2008 ◽  
Vol 89 (5) ◽  
pp. 1212-1219 ◽  
Author(s):  
Hai-Jun Xu ◽  
Zhang-Nv Yang ◽  
Jin-Fang Zhao ◽  
Cai-Hong Tian ◽  
Jun-Qing Ge ◽  
...  

Bombyx mori nucleopolyhedrovirus ORF56 (Bm56) is a baculovirus core gene that is highly conserved in all baculoviruses that have had their genomes sequenced to date. Its transcripts in BmNPV-infected cells could be detected from 12 h post-infection (p.i.) and the encoded protein could be detected at 16 h p.i. by using a polyclonal antibody against glutathione S-transferase–Bm56 fusion protein. Western blot analysis showed that Bm56 is a structural component of the occlusion-derived virus nucleocapsid. Subsequent confocal microscopy revealed that Bm56 was distributed in the outer nuclear membrane and the intranuclear region of infected cells. To investigate the role of Bm56 in virus replication, a Bm56-knockout bacmid of BmNPV was constructed via homologous recombination in Escherichia coli. The Bm56 deletion had no effect on budded virus (BV) production in cultured cells; however, the deletion affected occlusion-body morphogenesis. A larval bioassay demonstrated that the Bm56 deletion did not reduce infectivity, whereas it resulted in a 50 % lethal time that was 16–18 h longer than that of the wild-type bacmid at every dose used in this study. These results indicate that Bm56 facilitates efficient virus production in vivo; however, it is not essential for BV production in vitro.


Pituitary ◽  
2010 ◽  
Vol 14 (2) ◽  
pp. 141-147 ◽  
Author(s):  
Federico Gatto ◽  
Federica Barbieri ◽  
Lara Castelletti ◽  
Marica Arvigo ◽  
Alessandra Pattarozzi ◽  
...  

2010 ◽  
Vol 78 (6) ◽  
pp. 2370-2376 ◽  
Author(s):  
Louise M. Temple ◽  
David M. Miyamoto ◽  
Manju Mehta ◽  
Christian M. Capitini ◽  
Stephen Von Stetina ◽  
...  

ABSTRACT Bordetella avium causes bordetellosis in birds, a disease similar to whooping cough caused by Bordetella pertussis in children. B. avium agglutinates guinea pig erythrocytes via an unknown mechanism. Loss of hemagglutination ability results in attenuation. We report the use of transposon mutagenesis to identify two genes required for hemagglutination. The genes (hagA and hagB) were adjacent and divergently oriented and had no orthologs in the genomes of other Bordetella species. Construction of in-frame, unmarked mutations in each gene allowed examination of the role of each in conferring erythrocyte agglutination, explanted tracheal cell adherence, and turkey poult tracheal colonization. In all of the in vitro and in vivo assays, the requirement for the trans-acting products of hagA and hagB (HagA and HagB) was readily shown. Western blotting, using antibodies to purified HagA and HagB, revealed proteins of the predicted sizes of HagA and HagB in an outer membrane-enriched fraction. Antiserum to HagB, but not HagA, blocked B. avium erythrocyte agglutination and explanted turkey tracheal ring binding. Bioinformatic analysis indicated the similarity of HagA and HagB to several two-component secretory apparatuses in which one product facilitates the exposition of the other. HagB has the potential to serve as a useful immunogen to protect turkeys against colonization and subsequent disease.


2019 ◽  
Author(s):  
Alexandre Mariotte ◽  
Aurore Decauwer ◽  
Chrystelle Po ◽  
Cherine Abou-Faycal ◽  
Angelique Pichot ◽  
...  

The role of Monosodium Urate (MSU) crystals in gout pathophysiology is well described, as is the major impact of IL-1b in the inflammatory reaction that constitutes the hallmark of the disease. However, despite the discovery of the NLRP3 inflammasome and its role as a Pattern Recognition Receptor linking the detection of a danger signal (MSU) to IL-1b; secretion in vitro, the precise mechanisms leading to joint inflammation in gout patients are still poorly understood. Here, we provide an extensive clinical, biological and molecular characterization of the acute uratic inflammation mouse model induced by subcutaneous injection of MSU crystals, which accurately mimics human gout. Our work reveals several key features of MSU-dependent inflammation and identifies novel therapeutic opportunities, among which the use of topical application of imiquimod to promote interferon-dependent anti-inflammatory action maybe relevant.


2013 ◽  
Vol 94 (7) ◽  
pp. 1669-1679 ◽  
Author(s):  
Xingwei Xiang ◽  
Yunwang Shen ◽  
Rui Yang ◽  
Lin Chen ◽  
Xiaolong Hu ◽  
...  

Bombyx mori nucleopolyhedrovirus (BmNPV) BmP95 is a highly conserved gene that is found in all of the baculovirus genomes sequenced to date and is also found in nudiviruses. To investigate the role of BmP95 in virus infection in vitro, a BmP95 deletion virus (vBmP95-De) was generated by homologous recombination in Escherichia coli. Fluorescence and light microscopy and titration analysis indicated that the BmP95 deletion bacmid led to a defect in production of infectious budded virus (BV). However, deletion of BmP95 did not affect viral DNA replication. Electron microscopy showed that masses of aberrant tubular structures were present in cells transfected with the BmP95 deletion bacmid, indicating that deletion of BmP95 affected assembly of the nucleocapsid. This defect could be rescued by insertion of full-length BmP95 into the polyhedrin locus of the BmP95-knockout bacmid but not the N-terminal domain of BmP95. Together, these results showed that full-length BmP95 is essential for BV production and is required for nucleocapsid assembly.


Drug Delivery ◽  
2003 ◽  
Vol 10 (4) ◽  
pp. 269-275 ◽  
Author(s):  
M. Thilek Kumar ◽  
C. Rajeswari ◽  
J. Balasubramaniam ◽  
J. K. Pandit ◽  
S. Kant

Blood ◽  
2011 ◽  
Vol 118 (4) ◽  
pp. 1087-1098 ◽  
Author(s):  
Laure Gambardella ◽  
Karen E. Anderson ◽  
Claudia Nussbaum ◽  
Anne Segonds-Pichon ◽  
Tânia Margarido ◽  
...  

Abstract Neutrophils form a vital part of the innate immune response, but at the same time their inappropriate activation contributes to autoimmune diseases. Many molecular components are involved in fine-tuning neutrophil function. We report here the first characterization of the role of ARAP3, a PI3K and Rap-regulated GTPase-activating protein for RhoA and Arf6 in murine neutrophils. We show that neutrophils lacking ARAP3 are preactivated in vitro and in vivo, exhibiting increased β2 integrin affinity and avidity. ARAP3-deficient neutrophils are hyperresponsive in several adhesion-dependent situations in vitro, including the formation of reactive oxygen species, adhesion, spreading, and granule release. ARAP3-deficient cells adhere more firmly under flow conditions in vitro and to the vessel wall in vivo. Finally, loss of ARAP3 interferes with integrin-dependent neutrophil chemotaxis. The results of the present study suggest an important function of ARAP3 downstream of Rap. By modulating β2 integrin activity, ARAP3 guards neutrophils in their quiescent state unless activated.


Sign in / Sign up

Export Citation Format

Share Document