In vivo and in vitro phosphorylation of the adenovirus type 5 single-strand-specific DNA-binding protein

Virology ◽  
1977 ◽  
Vol 79 (1) ◽  
pp. 144-159 ◽  
Author(s):  
A.D. Levinson ◽  
E.H. Postel ◽  
A.J. Levine
eLife ◽  
2019 ◽  
Vol 8 ◽  
Author(s):  
Antoine Hocher ◽  
Maria Rojec ◽  
Jacob B Swadling ◽  
Alexander Esin ◽  
Tobias Warnecke

Histones are a principal constituent of chromatin in eukaryotes and fundamental to our understanding of eukaryotic gene regulation. In archaea, histones are widespread but not universal: several lineages have lost histone genes. What prompted or facilitated these losses and how archaea without histones organize their chromatin remains largely unknown. Here, we elucidate primary chromatin architecture in an archaeon without histones, Thermoplasma acidophilum, which harbors a HU family protein (HTa) that protects part of the genome from micrococcal nuclease digestion. Charting HTa-based chromatin architecture in vitro, in vivo and in an HTa-expressing E. coli strain, we present evidence that HTa is an archaeal histone analog. HTa preferentially binds to GC-rich sequences, exhibits invariant positioning throughout the growth cycle, and shows archaeal histone-like oligomerization behavior. Our results suggest that HTa, a DNA-binding protein of bacterial origin, has converged onto an architectural role filled by histones in other archaea.


2004 ◽  
Vol 339 (3) ◽  
pp. 505-514 ◽  
Author(s):  
Cristin C Brescia ◽  
Meenakshi K Kaw ◽  
Darren D Sledjeski

Sign in / Sign up

Export Citation Format

Share Document