Effects of inhibitors of the cytoplasmic structures and functions on the early phase of infection of cultured cells with simian virus 40

Virology ◽  
1987 ◽  
Vol 158 (1) ◽  
pp. 34-43 ◽  
Author(s):  
Hideo Shimura ◽  
Yoshikazu Umeno ◽  
Genki Kimura
1991 ◽  
Vol 11 (2) ◽  
pp. 1023-1029
Author(s):  
Y Li ◽  
D Li ◽  
K Osborn ◽  
L F Johnson

The thymidylate synthase (TS) gene is a housekeeping gene that is expressed at much higher levels in proliferating cells than in quiescent cells. We have studied the role of the TS 5'-flanking sequences in regulating the level of expression of the mouse TS gene. A variety of chimeric TS minigenes that contain different promoters linked either to the TS coding region (with or without introns) or to the chloramphenicol acetyltransferase (CAT) coding region were constructed. The activities of the minigenes were determined by transfecting them into cultured cells and measuring the levels of mRNA or enzyme derived from the chimeric genes. We found that the mouse TS promoter had about the same strength as the simian virus 40 early promoter but was significantly stronger than the herpes simplex virus thymidine kinase promoter. Stable transfection studies revealed that minigenes consisting of the normal TS promoter (extending to -1 kb), coding region, and polyadenylation signal were regulated normally in response to growth stimulation. When the TS promoter was replaced by the simian virus 40 early promoter or by a TS promoter that retained only 60 nucleotides upstream of the first transcriptional start site, the minigene was expressed constitutively. A minigene consisting of the TS promoter (extending to -1 kb) linked to the CAT coding region was also expressed constitutively. These observations indicate that sequences upstream of the transcriptional start sites of the TS gene are necessary, although not sufficient, for normal growth-regulated expression of the mouse TS gene.


1988 ◽  
Vol 8 (1) ◽  
pp. 62-70
Author(s):  
J B Jaynes ◽  
J E Johnson ◽  
J N Buskin ◽  
C L Gartside ◽  
S D Hauschka

Muscle creatine kinase (MCK) is induced to high levels during skeletal muscle differentiation. We have examined the upstream regulatory elements of the mouse MCK gene which specify its activation during myogenesis in culture. Fusion genes containing up to 3,300 nucleotides (nt) of MCK 5' flanking DNA in various positions and orientations relative to the bacterial chloramphenicol acetyltransferase (CAT) structural gene were transfected into cultured cells. Transient expression of CAT was compared between proliferating and differentiated MM14 mouse myoblasts and with nonmyogenic mouse L cells. The major effector of high-level expression was found to have the properties of a transcriptional enhancer. This element, located between 1,050 and 1,256 nt upstream of the transcription start site, was also found to have a major influence on the tissue and differentiation specificity of MCK expression; it activated either the MCK promoter or heterologous promoters only in differentiated muscle cells. Comparisons of viral and cellular enhancer sequences with the MCK enhancer revealed some similarities to essential regions of the simian virus 40 enhancer as well as to a region of the immunoglobulin heavy-chain enhancer, which has been implicated in tissue-specific protein binding. Even in the absence of the enhancer, low-level expression from a 776-nt MCK promoter retained differentiation specificity. In addition to positive regulatory elements, our data provide some evidence for negative regulatory elements with activity in myoblasts. These may contribute to the cell type and differentiation specificity of MCK expression.


1985 ◽  
Vol 63 (12) ◽  
pp. 1258-1264 ◽  
Author(s):  
T. M. Rose ◽  
E. W. Khandjian

Antisera prepared in mice against syngeneic spontaneously transformed AL/N cells (anti-TAL/N serum) identified a number of protein antigens synthesized by simian virus 40 (SV40) transformed cells, among which was a protein with a molecular mass of 105 000 daltons (p105). Of these transformed cell antigens which were immunogenic in a syngeneic system, only p105 was detected in primary mouse kidney cell cultures, p105 isolated from normal and transformed mouse cells was demonstrated to be identical by two-dimensional gel analysis. Relatively small amounts of p105 were synthesized in quiescent primary cultures, while the protein was actively synthesized in SV40-infected as well as in proliferating mouse kidney cells, and its synthesis in quiescent cells could be induced by subjecting the cultures to glucose starvation or heat-shock treatment. Immunofluorescent staining and cellular fractionation showed that p105 is normally localized to cytoplasmic structures. The results suggest that the expression of p105 is intimately associated with the metabolic state of the cell.


1981 ◽  
Vol 90 (3) ◽  
pp. 631-642 ◽  
Author(s):  
J Levine ◽  
M Willard

Fodrin (formerly designated 26 and 27) comprises two polypeptides (250,000 and 240,000 mol wt) that are axonally transported at a maximum time-averaged velocity of 40 mm/d--slower than the most rapidly moving axonally transported proteins, but faster than at least three additional groups of proteins. In this communication, we report the intracellular distribution of fodrin. Fodrin was purified from guinea pig brain, and a specific antifodrin antibody was produced in rabbit and used to localize fodrin in tissue sections and cultured cells by means of indirect immunofluorescence. Fodrin antigens were highly concentrated in the cortical cytoplasm of neurons and also nonneuronal tissues (e.g., skeletal muscle, uterus, intestinal epithelium). Their disposition resembles a lining of the cell: hence, the designation fodrin (from Greek fodros, lining). In cultured fibroblasts, immunofluorescently labeled fodrin antigens were arranged in parallel arrays of bands in the plane of the plasma membrane, possibly reflecting an exclusion of labeled fodrin from some areas occupied by stress fibers. The distribution of fodrin antigens in mouse 3T3 cells transformed with simian virus 40 was more diffuse, indicating that the disposition of fodrin is responsive to altered physiological states of the cell. When mixtures of fodrin and F-actin were centrifuged, fodrin cosedimented with the actin, indicating that these proteins interact in vitro. We conclude that fodrin is a specific component of the cortical cytoplasm of many cells and consider the possibilities: (a) that fodrin may be indirectly attached to the plasma membrane via cortical actin filaments; (b) that fodrin may be mobile within the cortical cytoplasm and that, in axons, a cortical lining may be in constant motion relative to the internal cytoplasm; and (c) that fodrin could serve to link other proteins and organelles to a submembrane force-generating system.


1981 ◽  
Vol 90 (1) ◽  
pp. 55-62 ◽  
Author(s):  
F Sieber ◽  
S Roseman

A new method is presented for the quantitative analysis of intercellular adhesive specificity. In this assay, two cell types are mixed, one unlabeled and the other labeled with the fluorescent dye, fluorescamine [4-phenylspiro(feran-2[3H],1'-phthalan)-3,3'-dione]. The resulting aggregates are analyzed by fluorescence microscopy to determine the number of labeled and unlabeled cells per aggregate. Random (nonspecific) aggregation was characterized by a binomial distribution, and adhesive specificity was accordingly quantified by the deviation (as determined by a chi-square test) from the calculated binomial distribution. The labeling procedure was simple and rapid, and experiments with 18 different cell types showed that it did not affect cell viability, morphology, rate and extent of adhesion, plating efficiency, and the capability of myogenic cells to undergo terminal differentiation. Most important, assays with morphologically identifiable cell pairs indicated that the fluorescent label neither induced apparent nor destroyed existing adhesive specificity. The most pronounced adhesive specificities were observed with freshly explanted cells from adult tissues and also with mixtures of simian virus 40-transformed and nontransformed BALB/c 3T3 cells. A glucosamine-6-phosphate N-acetylase-deficient mutant 3T3 line (AD6), however, aggregated randomly with parental 3T3 cells. Lectin-resistant mutant Chinese hamster ovary (CHO) cells displayed marginal adhesive specificity when mixed with normal CHO cells.


1991 ◽  
Vol 11 (2) ◽  
pp. 1023-1029 ◽  
Author(s):  
Y Li ◽  
D Li ◽  
K Osborn ◽  
L F Johnson

The thymidylate synthase (TS) gene is a housekeeping gene that is expressed at much higher levels in proliferating cells than in quiescent cells. We have studied the role of the TS 5'-flanking sequences in regulating the level of expression of the mouse TS gene. A variety of chimeric TS minigenes that contain different promoters linked either to the TS coding region (with or without introns) or to the chloramphenicol acetyltransferase (CAT) coding region were constructed. The activities of the minigenes were determined by transfecting them into cultured cells and measuring the levels of mRNA or enzyme derived from the chimeric genes. We found that the mouse TS promoter had about the same strength as the simian virus 40 early promoter but was significantly stronger than the herpes simplex virus thymidine kinase promoter. Stable transfection studies revealed that minigenes consisting of the normal TS promoter (extending to -1 kb), coding region, and polyadenylation signal were regulated normally in response to growth stimulation. When the TS promoter was replaced by the simian virus 40 early promoter or by a TS promoter that retained only 60 nucleotides upstream of the first transcriptional start site, the minigene was expressed constitutively. A minigene consisting of the TS promoter (extending to -1 kb) linked to the CAT coding region was also expressed constitutively. These observations indicate that sequences upstream of the transcriptional start sites of the TS gene are necessary, although not sufficient, for normal growth-regulated expression of the mouse TS gene.


2021 ◽  
Vol 8 (1) ◽  
Author(s):  
Kai Furuya ◽  
Tao Wu ◽  
Ai Orimoto ◽  
Eriko Sugano ◽  
Hiroshi Tomita ◽  
...  

AbstractCellular immortalization enables indefinite expansion of cultured cells. However, the process of cell immortalization sometimes changes the original nature of primary cells. In this study, we performed expression profiling of poly A-tailed RNA from primary and immortalized corneal epithelial cells expressing Simian virus 40 large T antigen (SV40) or the combination of mutant cyclin-dependent kinase 4 (CDK4), cyclin D1, and telomere reverse transcriptase (TERT). Furthermore, we studied the expression profile of SV40 cells cultured in medium with or without serum. The profiling of whole expression pattern revealed that immortalized corneal epithelial cells with SV40 showed a distinct expression pattern from wild-type cells regardless of the presence or absence of serum, while corneal epithelial cells with combinatorial expression showed an expression pattern relatively closer to that of wild-type cells.


Biomimetics ◽  
2021 ◽  
Vol 7 (1) ◽  
pp. 5
Author(s):  
Hieu M. Pham ◽  
Yuli Zhang ◽  
Jose G. Munguia-Lopez ◽  
Simon D. Tran

Saliva production by salivary glands play a crucial role in oral health. The loss of salivary gland function could lead to xerostomia, a condition also known as dry mouth. Significant reduction in saliva production could lead to further complications such as difficulty in speech, mastication, and increased susceptibility to dental caries and oral infections and diseases. While some palliative treatments are available for xerostomia, there are no curative treatments to date. This study explores the use of Egg White Alginate (EWA), as an alternative scaffold to Matrigel® for culturing 3D salivary gland cells. A protocol for an optimized EWA was established by comparing cell viability using 1%, 2%, and 3% alginate solution. The normal salivary simian virus 40-immortalized acinar cell (NS-SV-AC) and the submandibular gland-human-1 (SMG-hu-1) cell lines were also used to compare the spheroid formation and cell viability properties of both scaffold biomaterials; cell viability was observed over 10 days using a Live–Dead Cell Assay. Cell viability and spheroid size in 2% EWA was significantly greater than 1% and 3%. It is evident that EWA can support salivary cell survivability as well as form larger spheroids when compared to cells grown in Matrigel®. However, further investigations are necessary as it is unclear if cultured cells were proliferating or aggregating.


1980 ◽  
Vol 52 (3) ◽  
pp. 367-370 ◽  
Author(s):  
Hideyuki Kosaka ◽  
Yoshinori Sano ◽  
Yasuhiko Matsukado ◽  
Takeshi Sairenji ◽  
Yorio Hinuma

✓ To probe the possible presence of papovavirus-related T antigen(s) in human brain tumors, the imprinted or cultured cells at various passage levels were examined by anticomplement immunofluorescence using antisera to T antigen of each BK virus, JC virus, and simian virus 40. No T antigen was demonstrated in any tests with cells derived from 69 patients with various brain tumors. Twenty-two tumor cell strains cultured in the presence of a tumor promoter, phorbol ester, also failed to show the T antigen.


Sign in / Sign up

Export Citation Format

Share Document