Definition of neural response and incremental sensitivity of retinal ganglion cells in a tree shrew (Tupaia chinensis)

1979 ◽  
Vol 19 (8) ◽  
pp. 885-889 ◽  
Author(s):  
H.J. Ter Laak ◽  
J.M. Thijssen
Cephalalgia ◽  
2021 ◽  
pp. 033310242110146
Author(s):  
Arnold J Wilkins ◽  
Sarah M Haigh ◽  
Omar A Mahroo ◽  
Gordon T Plant

Photophobia is one of the most common symptoms in migraine, and the underlying mechanism is uncertain. The discovery of the intrinsically-photosensitive retinal ganglion cells which signal the intensity of light on the retina has led to discussion of their role in the pathogenesis of photophobia. In the current review, we discuss the relationship between pain and discomfort leading to light aversion (traditional photophobia) and discomfort from flicker, patterns, and colour that are also common in migraine and cannot be explained solely by the activity of intrinsically-photosensitive retinal ganglion cells. We argue that, at least in migraine, a cortical mechanism provides a parsimonious explanation for discomfort from all forms of visual stimulation, and that the traditional definition of photophobia as pain in response to light may be too restrictive. Future investigation that directly compares the retinal and cortical contributions to photophobia in migraine with that in other conditions may offer better specificity in identifying biomarkers and possible mechanisms to target for treatment.


2003 ◽  
Vol 20 (4) ◽  
pp. 363-372 ◽  
Author(s):  
HAIDONG D. LU ◽  
HEYWOOD M. PETRY

Tree shrews (Tupaia belangeri) are small diurnal mammals capable of quick and agile navigation. Electroretinographic and behavioral studies have indicated that tree shrews possess very good temporal vision, but the neuronal mechanisms underlying that temporal vision are not well understood. We used single-unit extracellular recording techniques to characterize the temporal response properties of individual retinal ganglion cell axons recorded from the optic tract. A prominent characteristic of most cells was their sustained or transient nature in responding to the flashing spot. Temporal modulation sensitivity functions were obtained using a Gaussian spot that was temporally modulated at different frequencies (2–60 Hz). Sustained cells respond linearly to contrast. They showed an average peak frequency of 6.9 Hz, a high-frequency cutoff at 31.3 Hz, and low-pass filtering. Transient cells showed nonlinear response to contrast. They had a peak frequency of 19.3 Hz, a high-frequency cutoff at about 47.6 Hz, band-pass filtering, and higher overall sensitivity than sustained cells. The responses of transient cells also showed a phase advance of about 88 deg whereas the phase advance for sustained cells was about 43 deg. Comparison with behavioral temporal modulation sensitivity results suggested that transient retinal ganglion cells may underlie detection for a wide range of temporal frequencies, with sustained ganglion cells possibly mediating detection below 4 Hz. These data suggest that two well-separated temporal channels exist at the retinal ganglion cell level in the tree shrew retina, with the transient channel playing a major role in temporal vision.


2017 ◽  
Vol 527 (1) ◽  
pp. 328-344 ◽  
Author(s):  
Elizabeth N. Johnson ◽  
Teleza Westbrook ◽  
Rod Shayesteh ◽  
Emily L. Chen ◽  
Joseph W. Schumacher ◽  
...  

Author(s):  
Kyril I. Kuznetsov ◽  
Vitaliy Yu. Maslov ◽  
Svetlana A. Fedulova ◽  
Nikolai S. Veselovsky

Sign in / Sign up

Export Citation Format

Share Document