Temporal modulation sensitivity of tree shrew retinal ganglion cells

2003 ◽  
Vol 20 (4) ◽  
pp. 363-372 ◽  
Author(s):  
HAIDONG D. LU ◽  
HEYWOOD M. PETRY

Tree shrews (Tupaia belangeri) are small diurnal mammals capable of quick and agile navigation. Electroretinographic and behavioral studies have indicated that tree shrews possess very good temporal vision, but the neuronal mechanisms underlying that temporal vision are not well understood. We used single-unit extracellular recording techniques to characterize the temporal response properties of individual retinal ganglion cell axons recorded from the optic tract. A prominent characteristic of most cells was their sustained or transient nature in responding to the flashing spot. Temporal modulation sensitivity functions were obtained using a Gaussian spot that was temporally modulated at different frequencies (2–60 Hz). Sustained cells respond linearly to contrast. They showed an average peak frequency of 6.9 Hz, a high-frequency cutoff at 31.3 Hz, and low-pass filtering. Transient cells showed nonlinear response to contrast. They had a peak frequency of 19.3 Hz, a high-frequency cutoff at about 47.6 Hz, band-pass filtering, and higher overall sensitivity than sustained cells. The responses of transient cells also showed a phase advance of about 88 deg whereas the phase advance for sustained cells was about 43 deg. Comparison with behavioral temporal modulation sensitivity results suggested that transient retinal ganglion cells may underlie detection for a wide range of temporal frequencies, with sustained ganglion cells possibly mediating detection below 4 Hz. These data suggest that two well-separated temporal channels exist at the retinal ganglion cell level in the tree shrew retina, with the transient channel playing a major role in temporal vision.

2020 ◽  
Vol 2020 ◽  
pp. 1-8
Author(s):  
Yuhong Fu ◽  
Ying Wang ◽  
Xinyuan Gao ◽  
Huiyao Li ◽  
Yue Yuan

Background. Diabetic retinopathy (DR) is a severe complication of diabetes mellitus. DR is considered as a neurovascular disease. Retinal ganglion cell (RGC) loss plays an important role in the vision function disorder of diabetic patients. Histone deacetylase3 (HDAC3) is closely related to injury repair and nerve regeneration. The correlation between HDAC3 and retinal ganglion cells in diabetic retinopathy is still unclear yet. Methods. To investigate the chronological sequence of the abnormalities of retinal ganglion cells in diabetic retinopathy, we choose 15 male db/db mice (aged 8 weeks, 12 weeks, 16 weeks, 18 weeks, and 25 weeks; each group had 3 mice) as diabetic groups and 3 male db/m mice (aged 8 weeks) as the control group. In this study, we examined the morphological and immunohistochemical changes of HDAC3, Caspase3, and LC3B in a sequential manner by characterizing the process of retinal ganglion cell variation. Results. Blood glucose levels and body weights of db/db mice were significantly higher than that of the control group, P<0.01. Compared with the control group, the number of retinal ganglion cells decreased with the duration of disease increasing. HDAC3 expression gradually increased in RGCs of db/db mice. Caspase3 expression gradually accelerated in RGCs of db/db mice. LC3B expression dynamically changed in RGCs of db/db mice. HDAC3 was positively correlated with Caspase3 expression (r=0.7424), P<0.01. HDAC3 was positively correlated with LC3B expression (r=0.7336), P<0.01. Discussion. We clarified the dynamic expression changes of HDAC3, Caspase3, and LC3B in retinal ganglion cells of db/db mice. Our results suggest the HDAC3 expression has a positive correlation with apoptosis and autophagy.


2011 ◽  
Vol 28 (5) ◽  
pp. 403-417 ◽  
Author(s):  
WALTER F. HEINE ◽  
CHRISTOPHER L. PASSAGLIA

AbstractThe rat is a popular animal model for vision research, yet there is little quantitative information about the physiological properties of the cells that provide its brain with visual input, the retinal ganglion cells. It is not clear whether rats even possess the full complement of ganglion cell types found in other mammals. Since such information is important for evaluating rodent models of visual disease and elucidating the function of homologous and heterologous cells in different animals, we recorded from rat ganglion cells in vivo and systematically measured their spatial receptive field (RF) properties using spot, annulus, and grating patterns. Most of the recorded cells bore likeness to cat X and Y cells, exhibiting brisk responses, center-surround RFs, and linear or nonlinear spatial summation. The others resembled various types of mammalian W cell, including local-edge-detector cells, suppressed-by-contrast cells, and an unusual type with an ON–OFF surround. They generally exhibited sluggish responses, larger RFs, and lower responsiveness. The peak responsivity of brisk-nonlinear (Y-type) cells was around twice that of brisk-linear (X-type) cells and several fold that of sluggish cells. The RF size of brisk-linear and brisk-nonlinear cells was indistinguishable, with average center and surround diameters of 5.6 ± 1.3 and 26.4 ± 11.3 deg, respectively. In contrast, the center diameter of recorded sluggish cells averaged 12.8 ± 7.9 deg. The homogeneous RF size of rat brisk cells is unlike that of cat X and Y cells, and its implication regarding the putative roles of these two ganglion cell types in visual signaling is discussed.


Development ◽  
1980 ◽  
Vol 55 (1) ◽  
pp. 77-92
Author(s):  
S. C. Sharma ◽  
J. G. Hollyfield

The specification of central connexions of retinal ganglion cells was studied in Xenopus laevis. In one series of experiments, the right eye primordium was rotated 180° at embryonic stages 24–32. In the other series, the left eye was transplanted into the right orbit, and vice versa, with either 0° or 180° rotation. After metamorphosis the visual projections from the operated eye to the contralateral optic tectum were mapped electrophysiologically and compared with the normal retinotectal map. In all cases the visual projection map was rotated through the same angle as was indicated by the position of the choroidal fissure. The left eye exchanged into the right orbit retained its original axes and projected to the contralateral tectum. These results suggest that retinal ganglion cell connexions are specified before stage 24.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Michal Geva ◽  
Noga Gershoni-Emek ◽  
Luana Naia ◽  
Philip Ly ◽  
Sandra Mota ◽  
...  

AbstractOptic neuropathies such as glaucoma are characterized by retinal ganglion cell (RGC) degeneration and death. The sigma-1 receptor (S1R) is an attractive target for treating optic neuropathies as it is highly expressed in RGCs, and its absence causes retinal degeneration. Activation of the S1R exerts neuroprotective effects in models of retinal degeneration. Pridopidine is a highly selective and potent S1R agonist in clinical development. We show that pridopidine exerts neuroprotection of retinal ganglion cells in two different rat models of glaucoma. Pridopidine strongly binds melanin, which is highly expressed in the retina. This feature of pridopidine has implications to its ocular distribution, bioavailability, and effective dose. Mitochondria dysfunction is a key contributor to retinal ganglion cell degeneration. Pridopidine rescues mitochondrial function via activation of the S1R, providing support for the potential mechanism driving its neuroprotective effect in retinal ganglion cells.


1992 ◽  
Vol 9 (3-4) ◽  
pp. 389-398 ◽  
Author(s):  
Luiz R. G. Britto ◽  
Dȃnia E. Hamassaki-Britto

AbstractA small number of enkephalin-like immunoreactive cells were observed in the ganglion cell layer of the pigeon retina. Many of these neurons were identified as ganglion cells, since they were retrogradely labeled after injections of fluorescent latex microspheres in the contralateral optic tectum. These ganglion cells were mainly distributed in the inferior retina, and their soma sizes ranged from 12–26 μm in the largest axis. The enkephalin-containing ganglion cells appear to represent only a very small percentage of the ganglion cells projecting to the optic tectum (less than 0.1%). Two to 7 weeks after removal of the neural retina, there was an almost complete elimination of an enkephalin-like immunoreactive plexus in layer 3 of the contralateral, rostrodorsal optic tectum. These data provide evidence for the existence of a population of enkephalinergic retinal ganglion cells with projections to the optic tectum.


Development ◽  
1999 ◽  
Vol 126 (24) ◽  
pp. 5713-5724 ◽  
Author(s):  
K.L. McCabe ◽  
E.C. Gunther ◽  
T.A. Reh

Neurons in both vertebrate and invertebrate eyes are organized in regular arrays. Although much is known about the mechanisms involved in the formation of the regular arrays of neurons found in invertebrate eyes, much less is known about the mechanisms of formation of neuronal mosaics in the vertebrate eye. The purpose of these studies was to determine the cellular mechanisms that pattern the first neurons in vertebrate retina, the retinal ganglion cells. We have found that the ganglion cells in the chick retina develop as a patterned array that spreads from the central to peripheral retina as a wave front of differentiation. The onset of ganglion cell differentiation keeps pace with overall retinal growth; however, there is no clear cell cycle synchronization at the front of differentiation of the first ganglion cells. The differentiation of ganglion cells is not dependent on signals from previously formed ganglion cells, since isolation of the peripheral retina by as much as 400 μm from the front of ganglion cell differentiation does not prevent new ganglion cells from developing. Consistent with previous studies, blocking FGF receptor activation with a specific inhibitor to the FGFRs retards the movement of the front of ganglion cell differentiation, while application of exogenous FGF1 causes the precocious development of ganglion cells in peripheral retina. Our observations, taken together with those of previous studies, support a role for FGFs and FGF receptor activation in the initial development of retinal ganglion cells from the undifferentiated neuroepithelium peripheral to the expanding wave front of differentiation.


2019 ◽  
Vol 1 (1) ◽  
Author(s):  
James R Tribble ◽  
Asta Vasalauskaite ◽  
Tony Redmond ◽  
Robert D Young ◽  
Shoaib Hassan ◽  
...  

Abstract Glaucoma is characterized by the progressive dysfunction and loss of retinal ganglion cells. However, the earliest degenerative events that occur in human glaucoma are relatively unknown. Work in animal models has demonstrated that retinal ganglion cell dendrites remodel and atrophy prior to the loss of the cell soma. Whether this occurs in human glaucoma has yet to be elucidated. Serial block face scanning electron microscopy is well established as a method to determine neuronal connectivity at high resolution but so far has only been performed in normal retina from animal models. To assess the structure–function relationship of early human glaucomatous neurodegeneration, regions of inner retina assessed to have none-to-moderate loss of retinal ganglion cell number were processed using serial block face scanning electron microscopy (n = 4 normal retinas, n = 4 glaucoma retinas). This allowed detailed 3D reconstruction of retinal ganglion cells and their intracellular components at a nanometre scale. In our datasets, retinal ganglion cell dendrites degenerate early in human glaucoma, with remodelling and redistribution of the mitochondria. We assessed the relationship between visual sensitivity and retinal ganglion cell density and discovered that this only partially conformed to predicted models of structure–function relationships, which may be affected by these early neurodegenerative changes. In this study, human glaucomatous retinal ganglion cells demonstrate compartmentalized degenerative changes as observed in animal models. Importantly, in these models, many of these changes have been demonstrated to be reversible, increasing the likelihood of translation to viable therapies for human glaucoma.


2007 ◽  
Vol 97 (5) ◽  
pp. 3790-3799 ◽  
Author(s):  
Sherwin C. Lee ◽  
Andrew T. Ishida

Antisera directed against hyperpolarization-activated mixed-cation (“ Ih”) and K+ (“Kir”) channels bind to some somata in the ganglion cell layer of rat and rabbit retina. Additionally, the termination of hyperpolarizing current injections can trigger spikes in some cat retinal ganglion cells, suggesting a rebound depolarization arising from activation of Ih. However, patch-clamp studies showed that rat ganglion cells lack inward rectification or present an inwardly rectifying K+ current. We therefore tested whether hyperpolarization activates Ih in dissociated, adult rat retinal ganglion cell somata. We report here that, although we found no inward rectification in some cells, and a Kir-like current in a few cells, hyperpolarization activated Ih in roughly 75% of the cells we recorded from in voltage clamp. We show that this current is blocked by Cs+ or ZD7288 and only slightly reduced by Ba2+, that the current amplitude and reversal potential are sensitive to extracellular Na+ and K+, and that we found no evidence of Kir in cells presenting Ih. In current clamp, injecting hyperpolarizing current induced a slowly relaxing membrane hyperpolarization that rebounded to a few action potentials when the hyperpolarizing current was stopped; both the membrane potential relaxation and rebound spikes were blocked by ZD7288. These results provide the first measurement of Ih in mammalian retinal ganglion cells and indicate that the ion channels of rat retinal ganglion cells may vary in ways not expected from previous voltage and current recordings.


1999 ◽  
Vol 16 (2) ◽  
pp. 319-332 ◽  
Author(s):  
A.M. GRANDA ◽  
J.R. DEARWORTH ◽  
B. SUBRAMANIAM

Receptive fields of retinal ganglion cells in turtle have excitatory and inhibitory components that are balanced along the dimensions of wavelength, functional ON and OFF responses, and spatial assignments of center and surround. These components were analyzed by spectral light adaptations and by the glutamate agonist, 2-amino-4-phosphonobutyric acid (APB). Extracellular recordings to stationary and moving spots of light were used to map changes in receptive fields. ON spike counts minus OFF spike counts, derived from flashed stationary light spots, quantified functional shifts by calculating normalized mean response modulations. The data show that receptive fields are not static, but rather are dynamic arrangements which depend on linked, antagonistic balances among the three dimensions of wavelength, ON and OFF response functions, and center/surround areas.


Sign in / Sign up

Export Citation Format

Share Document