Rates of biogenic oxygen production in mass cultures of microalgae, absorption of atmospheric oxygen and oxygen availability for wastewater treatment

1988 ◽  
Vol 22 (11) ◽  
pp. 1459-1464 ◽  
Author(s):  
J.U. Grobbelaar ◽  
C.J. Soeder ◽  
J. Groeneweg ◽  
E. Stengel ◽  
P. Hartig
Author(s):  
Donald Eugene Canfield

This chapter discusses the modeling of the history of atmospheric oxygen. The most recently deposited sediments will also be the most prone to weathering through processes like sea-level change or uplift of the land. Thus, through rapid recycling, high rates of oxygen production through the burial of organic-rich sediments will quickly lead to high rates of oxygen consumption through the exposure of these organic-rich sediments to weathering. From a modeling perspective, rapid recycling helps to dampen oxygen changes. This is important because the fluxes of oxygen through the atmosphere during organic carbon and pyrite burial, and by weathering, are huge compared to the relatively small amounts of oxygen in the atmosphere. Thus, all of the oxygen in the present atmosphere is cycled through geologic processes of oxygen liberation (organic carbon and pyrite burial) and consumption (weathering) on a time scale of about 2 to 3 million years.


2018 ◽  
Author(s):  
Christen L. Grettenberger ◽  
Dawn Y. Sumner ◽  
Kate Wall ◽  
C. Titus Brown ◽  
Jonathan Eisen ◽  
...  

AbstractAtmospheric oxygen level rose dramatically around 2.4 billion years ago due to oxygenic photosynthesis by the Cyanobacteria. The oxidation of surface environments permanently changed the future of life on Earth, yet the evolutionary processes leading to oxygen production are poorly constrained. Partial records of these evolutionary steps are preserved in the genomes of organisms phylogenetically placed between non-photosynthetic Melainabacteria, crown-group Cyanobacteria, and Gloeobacter, representing the earliest-branching Cyanobacteria capable of oxygenic photosynthesis. Here, we describe nearly complete, metagenome assembled genomes of an uncultured organism phylogenetically placed between the Melainabacteria and crown-group Cyanobacteria, for which we propose the name Candidatus Aurora vandensis {au.rora Latin noun dawn and vand.ensis, originating from Vanda}.The metagenome assembled genome of A. vandensis contains homologs of most genes necessary for oxygenic photosynthesis including key reaction center proteins. Many extrinsic proteins associated with the photosystems in other species are, however, missing or poorly conserved. The assembled genome also lacks homologs of genes associated with the pigments phycocyanoerethrin, phycoeretherin and several structural parts of the phycobilisome. Based on the content of the genome, we propose an evolutionary model for increasing efficiency of oxygenic photosynthesis through the evolution of extrinsic proteins to stabilize photosystem II and I reaction centers and improve photon capture. This model suggests that the evolution of oxygenic photosynthesis may have significantly preceded oxidation of Earth’s atmosphere due to low net oxygen production by early Cyanobacteria.


2018 ◽  
Vol 78 (8) ◽  
pp. 1762-1771 ◽  
Author(s):  
Martina Pastore ◽  
Sergio Santaeufemia ◽  
Alberto Bertucco ◽  
Eleonora Sforza

Abstract Microalgal-bacteria consortia application on wastewater treatment has been widely studied, but a deeper comprehension of consortium interactions is still lacking. In particular, mixotrophic exploitation of organic compounds by microalgae affects gas (CO2 and O2) exchange between microalgae and bacteria, but it is not clear how environmental conditions may regulate algal metabolism. Using a respirometric-based protocol, we evaluated the combined effect of organic carbon and light intensity on oxygen production and consumption by C. protothecoides, and found that the chemical oxygen demand (COD) was not consumed when incident light increased. Batch experiments under different incident lights, with C. protothecoides alone and in consortium with activated sludge bacteria, confirmed the results obtained by respirometry. Continuous system experiments testing the combined effects of light intensity and residence time confirmed that, under limiting light, mixotrophy is preferred by C. protothecoides, and the nutrient (COD, N, P) removal capability of the consortium is enhanced.


2019 ◽  
Vol 11 (10) ◽  
pp. 2951 ◽  
Author(s):  
Donghan Kang ◽  
Keug Tae Kim ◽  
Tae-Young Heo ◽  
Gyutae Kwon ◽  
Chaeseung Lim ◽  
...  

Microalgal–bacterial consortia are considered an alternative method to conventional wastewater treatment processes with several benefits, such as low oxygen production cost and reduced emission of carbon dioxide resulting from photosynthetic activity. Besides, microalgae effectively remove various emerging contaminants and heavy metals that are hardly removed by conventional wastewater treatment processes. The purpose of this study is finding optimal operation conditions (e.g., light wavelengths, light intensity, microalgal–bacterial consortia biomass) when applying microalgae in wastewater treatment system. Firstly, reduced transmittance was monitored at four different wavelengths (i.e., blue, green, red, and white light) and at various concentrations of microalgal–bacterial consortia. Light transmittance rates were rapidly reduced as the biomass increased, where the highest transmittance was observed in green light. Secondly, the reduction of oxygen production over time, by the inhibition of the photosynthetic activity, was tested as the light intensity increased at four different wavelengths and at low (100 mg L−1) and high (500 mg L−1) concentrations of microalgal–bacterial consortia. The observations and subsequent statistical analyses verify that microalgal–bacterial consortia show the strongest resistance to the inhibition of the photosynthetic activity in green light, with white coming next, when the intensity of light is increased.


2008 ◽  
Vol 363 (1504) ◽  
pp. 2731-2743 ◽  
Author(s):  
Roger Buick

The atmosphere has apparently been oxygenated since the ‘Great Oxidation Event’ ca 2.4 Ga ago, but when the photosynthetic oxygen production began is debatable. However, geological and geochemical evidence from older sedimentary rocks indicates that oxygenic photosynthesis evolved well before this oxygenation event. Fluid-inclusion oils in ca 2.45 Ga sandstones contain hydrocarbon biomarkers evidently sourced from similarly ancient kerogen, preserved without subsequent contamination, and derived from organisms producing and requiring molecular oxygen. Mo and Re abundances and sulphur isotope systematics of slightly older (2.5 Ga) kerogenous shales record a transient pulse of atmospheric oxygen. As early as ca 2.7 Ga, stromatolites and biomarkers from evaporative lake sediments deficient in exogenous reducing power strongly imply that oxygen-producing cyanobacteria had already evolved. Even at ca 3.2 Ga, thick and widespread kerogenous shales are consistent with aerobic photoautrophic marine plankton, and U–Pb data from ca 3.8 Ga metasediments suggest that this metabolism could have arisen by the start of the geological record. Hence, the hypothesis that oxygenic photosynthesis evolved well before the atmosphere became permanently oxygenated seems well supported.


Processes ◽  
2021 ◽  
Vol 9 (5) ◽  
pp. 820
Author(s):  
Jiří Masojídek ◽  
Karolína Ranglová ◽  
Gergely Ernö Lakatos ◽  
Anna Silva Benavides ◽  
Giuseppe Torzillo

Since the 1950s, microalgae have been grown commercially in man-made cultivation units and used for biomass production as a source of food and feed supplements, pharmaceuticals, cosmetics and lately biofuels, as well as a means for wastewater treatment and mitigation of atmospheric CO2 build-up. In this work, photosynthesis and growth affecting variables—light intensity, pH, CO2/O2 exchange, nutrient supply, culture turbulence, light/dark cell cycling, biomass density and culture depth (light path)—are reviewed as concerns in microalgae mass cultures. Various photosynthesis monitoring techniques were employed to study photosynthetic performance to optimize the growth of microalgae strains in outdoor cultivation units. The most operative and reliable techniques appeared to be fast-response ones based on chlorophyll fluorescence and oxygen production monitoring, which provide analogous results.


Sign in / Sign up

Export Citation Format

Share Document