Hatchery-reared landlocked Arctic charr, Salvelinus alpinus (L.), from Lake Takvatn, reared in fresh and sea water I. Biochemical composition of food, and lipid composition of fish reared in fresh water

Aquaculture ◽  
1987 ◽  
Vol 67 (3-4) ◽  
pp. 343-351 ◽  
Author(s):  
Einar Ringø ◽  
Baard Nilsen
1971 ◽  
Vol 55 (1) ◽  
pp. 213-222
Author(s):  
R. A. ROBERTS

1. The degree of euryhalinity in a fresh-water resident population of the arctic char, Salvelinus alpinus, has been determined. 2. Although isolated in fresh water for c. 10000-12000 years these fish still show a high degree of salinity tolerance characteristic of their ancestral stock, but this is variably developed in individuals. 3. In fresh water, blood sodium concentration is regulated at 150 mM/l and chloride at 130 mM/l. These increase to 233 and 218 mm/l respectively in sea water. 4. Fish in sea water show a large increase in muscle sodium, although the potassium concentration is only slightly higher than that maintained in fresh water. The total sodium content of the fish reflects the increase observed in the intracellular and extracellular compartments. 5. The rate of sodium turnover in sea-water-adapted fish is some ten times higher than in fresh-water-adapted fish, although it is significantly lower than that observed in most sea-water-adapted teleosts.


2020 ◽  
Vol 80 (4) ◽  
pp. 907-913
Author(s):  
A. Mardones ◽  
R. Vega ◽  
F. Encina ◽  
C. Pichara ◽  
K. González ◽  
...  

Abstract Studies in Salvelinus alpinus, Arctic charr, indicate that it has a low capacity to hyposmorregulatory or adaption to sea in winter periods in Arctic waters. The investigation finds to determinate the rank optimum of salinity to can cultivate this species at Chile. The weight adequate was determined to join on the sea by analysis of gill Na+, K+-ATPase activity, that it was found between the ranks 80-130 g, with 14.5 U/mg. It underwent evaluation of fish growth of 72 g salinities from 0 (control), 18, 25 and 33 g/L (sea water) for 94 days. The results indicate that the largest increases were obtained in brackish water. T18 g/L and T25 g/L achieved growth of 25% and 19% on day 94 and term sampling respectively. It is important to mention that the 8% that survived in seawater introduced percentages growth 16.6% equivalent to brackish water and control. These results suggest that Salvelinus alpinus can grow in seawater, with levels of Na+, K+-ATPase similar to those submitted by Salmo salar with a weight not less than 80 g.


2013 ◽  
Vol 45 (12) ◽  
pp. 1953-1963 ◽  
Author(s):  
Marcia Chiasson ◽  
Margaret Quinton ◽  
Claude Pelletier ◽  
Roy Danzmann ◽  
Moira Ferguson

1989 ◽  
Vol 159 (4) ◽  
pp. 371-378 ◽  
Author(s):  
Bengt Finstad ◽  
Kjell J. Nilssen ◽  
Arne M. Arnesen

Author(s):  
Olga Mashukova ◽  
Olga Mashukova ◽  
Yuriy Tokarev ◽  
Yuriy Tokarev ◽  
Nadejda Kopytina ◽  
...  

We studied for the first time luminescence characteristics of the some micromycetes, isolated from the bottom sediments of the Black sea from the 27 m depth. Luminescence parameters were registered at laboratory complex “Svet” using mechanical and chemical stimulations. Fungi cultures of genera Acremonium, Aspergillus, Penicillium were isolated on ChDA medium which served as control. Culture of Penicillium commune gave no light emission with any kind of stimulation. Culture of Acremonium sp. has shown luminescence in the blue – green field of spectrum. Using chemical stimulation by fresh water we registered signals with luminescence energy (to 3.24 ± 0.11)•108 quantum•cm2 and duration up to 4.42 s, which 3 times exceeded analogous magnitudes in a group, stimulated by sea water (p < 0.05). Under chemical stimulation by ethyl alcohol fungi culture luminescence was not observed. Culture of Aspergillus fumigatus possessed the most expressed properties of luminescence. Stimulation by fresh water culture emission with energy of (3.35 ± 0.11)•108 quantum•cm2 and duration up to 4.96 s. Action of ethyl alcohol to culture also stimulated signals, but intensity of light emission was 3–4 times lower than under mechanical stimulation. For sure the given studies will permit not only to evaluate contribution of marine fungi into general bioluminescence of the sea, but as well to determine places of accumulation of opportunistic species in the sea.


Sign in / Sign up

Export Citation Format

Share Document