Preliminary Observations on the Ionic Regulation of the Arctic Char Salvelinus Alpinus

1971 ◽  
Vol 55 (1) ◽  
pp. 213-222
Author(s):  
R. A. ROBERTS

1. The degree of euryhalinity in a fresh-water resident population of the arctic char, Salvelinus alpinus, has been determined. 2. Although isolated in fresh water for c. 10000-12000 years these fish still show a high degree of salinity tolerance characteristic of their ancestral stock, but this is variably developed in individuals. 3. In fresh water, blood sodium concentration is regulated at 150 mM/l and chloride at 130 mM/l. These increase to 233 and 218 mm/l respectively in sea water. 4. Fish in sea water show a large increase in muscle sodium, although the potassium concentration is only slightly higher than that maintained in fresh water. The total sodium content of the fish reflects the increase observed in the intracellular and extracellular compartments. 5. The rate of sodium turnover in sea-water-adapted fish is some ten times higher than in fresh-water-adapted fish, although it is significantly lower than that observed in most sea-water-adapted teleosts.

2019 ◽  
Vol 76 (12) ◽  
pp. 2408-2417 ◽  
Author(s):  
Arne Johan Jensen ◽  
Bengt Finstad ◽  
Peder Fiske

It is hypothesized that in diadromous fish, migrations may occur because of differences in the availability of food in marine and freshwater habitats. The benefits of migration to sea may be increased growth opportunities and reproductive output, while the costs may be increased mortality and increased energy use. Here we examine mortality rates of anadromous Arctic char (Salvelinus alpinus) and brown trout (Salmo trutta) in fresh water and at sea over a 25-year period to test these hypotheses. Daily mortality rates were 5–15 times higher at sea than in fresh water, with highest rates for first-time migrants, inferring a clear trade-off between increased mass gain and mortality risk during the sea migration. Descending smolts were caught in a trap at the outlet of the river, individually tagged, and thereafter recorded each time they passed through the trap on their annual migration between the river and the sea. Brown trout females seemed to benefit to a higher degree from migrating to sea than did female Arctic char, probably because of the higher growth rate at sea, and hence higher reproductive output.


Author(s):  
Véronique Dubos ◽  
André St-Hilaire ◽  
Normand E Bergeron

Arctic char is a fish species known to occupy diverse habitats within the Arctic region. However, summer habitat use during the juvenile stage of the anadromous form is largely unknown. The present study aims to characterize fry and parr summer habitat preferences. Surveys were conducted by electrofishing, associated with physical habitat characterization on several rivers of the Ungava Bay, Nunavik, Canada. At the microhabitat and station scales, fry showed significant habitat preferences for shallow water and slow velocity. At the mesohabitat scale, fry showed a significant habitat selectivity for riffles. This habitat selectivity implies that habitat models can be built to evaluate the potential of habitat suitability for Arctic char fry. However, no significant habitat selectivity was found for parr. Parr size was nonetheless positively correlated with velocity, which was found to be a limitative factor for juvenile habitat use. This first attempt at modeling juvenile anadromous Arctic char habitat in rivers emphasizes the importance of selecting an appropriate spatial scale and reiterates the fact that parr showed relatively high plasticity in stream habitat selection.


1968 ◽  
Vol 48 (2) ◽  
pp. 359-380
Author(s):  
D. W. SUTCLIFFE

1. Sodium uptake and loss rates are given for three gammarids acclimatized to media ranging from fresh water to undiluted sea water. 2. In Gammarus zaddachi and G. tigrinus the sodium transporting system at the body surface is half-saturated at an external concentration of about 1 mM/l. and fully saturated at about 10 mM/l. sodium. In Marinogammarus finmarchicus the respective concentrations are six to ten times higher. 3. M. finmarchicus is more permeable to water and salts than G. zaddachi and G. tigrinus. Estimated urine flow rates were equivalent to 6.5% body weight/hr./ osmole gradient at 10°C. in M. finmarchicus and 2.8% body weight/hr./osmole gradient in G. zaddachi. The permeability of the body surface to outward diffusion of sodium was four times higher in M. finmarchicus, but sodium losses across the body surface represent at least 50% of the total losses in both M. finmarchicus and G. zaddachi. 4. Calculations suggest that G. zaddachi produces urine slightly hypotonic to the blood when acclimatized to the range 20% down to 2% sea water. In fresh water the urine sodium concentration is reduced to a very low level. 5. The process of adaptation to fresh water in gammarid crustaceans is illustrated with reference to a series of species from marine, brackish and freshwater habitats.


1968 ◽  
Vol 48 (1) ◽  
pp. 141-158 ◽  
Author(s):  
P. C. CROGHAN ◽  
A. P. M. LOCKWOOD

1. The isopod Mesidotea entomon has colonized the Baltic and certain Swedish lakes since the end of the last Ice Age. 2. The ionic regulation of Baltic animals and fresh-water animals (L. Mälaren) has been compared. 3. It has been possible to adapt Baltic animals to very dilute media, but 5% Askö sea water (5.5 mM/l. Na) appears to be the limit of adaptation. The haemolymph sodium concentration of Baltic animals from the very dilute media was considerably lowered. 4. The haemolymph sodium concentration in Mälaren animals is high (250 mM/l. Na) and comparable with that in Baltic animals in much more concentrated solution. The haemolymph ionic ratios of the Baltic and freshwater animals are similar. The Cl:Na ratio rises slightly in the more concentrated haemolymph samples. 5. From the concentration of ions in the haemolymph and in the total body water, the relative volume of the haemolymph was calculated. Mälaren animals appear to have a much larger haemolymph volume. 6. The permeability of the animals was determined from the rate of loss of sodium into de-ionized water. The permeability of the Mälaren animals is considerably reduced compared to the Baltic animals. Permeability is not related to the medium to which the animals had been adapted. 7. The sodium influx was determined using 22Na. The rate of active uptake was calculated from this. The maximal rate of active uptake was similar in Baltic and Mälaren animals. The sodium concentration of the medium at which active uptake was half maximum (KM) was considerably lower in Malaren animals than in Baltic animals. 8. The evolution of Mesidotea as a fresh-water animal is interpreted as a result of a reduction in permeability of the external surfaces to NaCl and an increase in the affinity of the active transport mechanism enabling the animal to maintain the haemolymph NaCl concentration in a steady state in fresh water.


1965 ◽  
Vol 209 (5) ◽  
pp. 955-960 ◽  
Author(s):  
P. Garrahan ◽  
M. F. Villamil ◽  
J. A. Zadunaisky

Pieces of dog carotid artery were studied with respect to water and sodium content. Total sodium content averaged 113 ± 1.2 mm/kg fresh tissue; total water 73.6 ± 0.3% and inulin space 36.2 ± 0.5% of tissue wet wt. A total of 94.8 ± 1.3% of sodium exchanged within 6–12 min with Na22, and 97.4 ± 0.7% of the stable sodium was extracted in sodium-free solution (choline replacement). The curve of efflux of Na22 at 37 C could be decomposed into three simple exponentials with half-times of 42.5 ± 2.3 sec ( phase 1), 5.0 ± 0.3 min ( phase 2), and 71.0 ± 7.3 min ( phase 3). Exchange of sodium of phase 1 (extracellular) fitted well with a theoretical diffusion curve, showed low temperature coefficient and no potassium dependency, and was not influenced by ouabain. Exchange of sodium of phase 2 (cellular) showed high temperature coefficient and potassium dependency and was sensitive to ouabain. Calculations based on the compartmental analysis indicate a too-great intracellular sodium concentration. Binding of sodium to polyanions in the extracellular space is suggested as a possible explanation of the results.


2006 ◽  
Vol 84 (7) ◽  
pp. 1019-1024 ◽  
Author(s):  
Jonathan Vaz Serrano ◽  
Ivar Folstad ◽  
Geir Rudolfsen ◽  
Lars Figenschou

Theoretical models predict that subordinate males should have higher sperm velocity to compensate for their disadvantaged mating role and because they experience sperm competition more frequently than dominant males. Differences in mean velocity between sperm of dominants and subordinates in the predicted direction are also documented for a few species, including the Arctic char, Salvelinus alpinus (L., 1758). Yet, this difference in mean velocity does not imply that the fastest sperm within an ejaculate, which are those most likely to fertilize eggs, swim faster in subordinates than in dominants. We studied the 5% and 10% fastest sperm cells in ejaculates of dominant and subordinate Arctic char. Before individuals attained their status, there were no differences in velocity between the fastest sperm of males that later became dominant or subordinate. Yet, after establishment of social position, subordinates showed significantly higher sperm swimming speed of the fastest cells in the first 30 s post activation (i.e., at 15, 20, and 30 s post activation). Males that became subordinates showed no change in sperm speed of the fast cells compared with those at pre-trial levels, whereas males that became dominant reduced the speed of their sperm (15 s post activation) compared with those at pre-trial levels. Our results suggest that males which attain social dominance are unable to maintain high sperm velocity, even among the small fraction of the fastest cells.


1999 ◽  
Vol 56 (8) ◽  
pp. 1370-1375
Author(s):  
Even H Jørgensen ◽  
Johannes Wolkers

In this study, the time-dependent P450 response to oral benzo[a]pyrene exposure at 1 and 10°C was investigated in winter- and summer-acclimated Arctic char (Salvelinus alpinus). In both seasons, a strong induction of CYP1A activities and protein levels (measured only in the winter experiment) were seen at both 1 and 10°C. At 1°C, the responses were delayed and more long-lasting than at 10°C. No within-season difference between 1 and 10°C in the magnitude of the induction response was found, but due to elevated baseline CYP1A activities, the induction response was seven times lower in winter- as compared with the response in summer-acclimated Arctic char. The results show that the CYP1A enzymes of the Arctic char respond to temperature changes in a compensatory way, and they are promising with respect to the applicability of the P450 enzyme system of the Arctic char as a biomarker for monitoring polycyclic aromatic hydrocarbon contamination in high-latitude environments. More studies are needed, however, to reveal seasonal differences in the biomarker response to pollutants.


1958 ◽  
Vol 195 (2) ◽  
pp. 445-447 ◽  
Author(s):  
S. Charles Freed ◽  
Shirley St. George ◽  
Ray H. Rosenman

The hypotension of potassium-deficiency is associated with a decrease in aorta potassium concentration, the sodium content remaining unchanged, resulting in a high sodium/potassium ratio. Loss of arterial tone may result and thus contribute to the lowering of blood pressure. Cortisone administration to such rats does not alter the low aorta potassium content but appreciably reduces the sodium concentration. The return to a more normal sodium/potassium ratio in the aorta following cortisone may restore the arterial tone and thus explain the blood pressure rise to normal levels.


Sign in / Sign up

Export Citation Format

Share Document