Finite element analysis for convective heat diffusion with phase change

1993 ◽  
Vol 104 (1) ◽  
pp. 19-30 ◽  
Author(s):  
Daichao Sheng ◽  
Kennet B. Axelsson ◽  
Sven Knutsson
2013 ◽  
Vol 534 ◽  
pp. 136-140
Author(s):  
Rosalena Irma Alip ◽  
Ryota Kobayashi ◽  
Yu Long Zhang ◽  
Zulfakri bin Mohamad ◽  
You Yin ◽  
...  

A novel phase change memory structure with a separate heater was proposed for a multilevel storage. Finite element analysis was conducted to investigate the possibility of multilevel storage. 100 ns SET pulses, with an increasing amplitude from 0.5 V to 3 V, were applied for heating the phase change layer, Ge2Se2T5 (GST). From the simulation result, it was exhibited that the temperature in the GST layer increased gradually when an increasing pulse is applied to the separate heater layer (N-TiSi3). This implies that crystallization is well controlled by changing the amplitude of the applied SET pulse. The gradual increase in the temperature leads to gradual resistance drop, depending strongly on the capping material. The gradual resistance drop will allow multilevel storage for the memory device.


2011 ◽  
Vol 497 ◽  
pp. 106-110
Author(s):  
You Yin ◽  
Sumio Hosaka

Performance of lateral phase change memories (LPCMs) is investigated by both electrical characterization and finite element analysis. Ge2Sb2Te5 lateral PCMs (GST-LPCMs) exhibit a low reset current but a bad endurance. By replacing GST with Sb2Te3 (ST) and adding a TiN layer between ST and electrodes, the ST-TiN-LPCMs are demonstrated to have a much improved endurance. Finite element analysis of the LPCMs with electric-thermal structural interaction shows that thermal confinement makes GST-LPCMs low-power consumptive but that high level stress makes them readily broken. In contrast, ST-TiN-LPCMs experience low level stress during operation but high power consumption is required.


Sign in / Sign up

Export Citation Format

Share Document