Finite element analysis of a laminated composite plate subjected to circularly distributed central impact loading

1988 ◽  
Vol 28 (6) ◽  
pp. 729-736 ◽  
Author(s):  
H. Aggour ◽  
C.T. Sun
Polymers ◽  
2021 ◽  
Vol 13 (2) ◽  
pp. 209
Author(s):  
Venkatachalam Gopalan ◽  
Vimalanand Suthenthiraveerappa ◽  
A. Raja Annamalai ◽  
Santhanakrishnan Manivannan ◽  
Vignesh Pragasam ◽  
...  

Due to the growing environmental awareness, the development of sustainable green composites is in high demand in composite industries, mainly in the automotive, aircraft, construction and marine applications. This work was an attempt to experimentally and numerically investigate the dynamic characteristics of Woven Flax/Bio epoxy laminated composite plates. In addition, the optimisation study on the dynamic behaviours of the Woven Flax/Bio epoxy composite plate is carried out using the response surface methodology (RSM) by consideration of the various parameters like ply orientation, boundary condition and aspect ratio. The elastic constants of the Woven Flax/Bio epoxy composite lamina needed for the numerical simulation are determined experimentally using two methods, i.e., the usual mechanical tests as well as through the impulse excitation of vibration-based approach and made a comparison between them. The numerical analysis on the free vibration characteristics of the composite was carried out using ANSYS, a finite element analysis (FEA) software. The confirmation of the FE model was accomplished by comparing the numerical results with its experimental counterpart. Finally, a comparison was made between the results obtained through the regression equation and finite element analysis.


2014 ◽  
Vol 592-594 ◽  
pp. 560-564 ◽  
Author(s):  
P. Emmanuel Nicholas ◽  
K.P. Padmanaban ◽  
D. Vasudevan ◽  
I. Joseph Selvaraj

Laminated composite plates are greatly used in many applications where high specific strength and stiffness are mandatory. These structures may have holes in order to accommodate windows and doors if it is used for air craft structures or to provide cables and inspection system if it is used in the applications like power transmission systems and automobiles. The laminated composite plates with holes shall be analyzed using finite element analysis. It is necessary to optimize the parameters like thickness, fiber orientation, material and the stacking sequence to obtain the desired characteristics for these structures. But using finite element analysis makes the process more tedious job. With this in mind it is proposed here to construct the artificial neural network to predict the buckling behavior of the composite plate.


Sign in / Sign up

Export Citation Format

Share Document