Photoionization cross sections and photoelectron angular distributions for x-ray line energies in the range 0.132–4.509 keV targets: 1 ≤ Z ≤ 100

1979 ◽  
Vol 23 (5) ◽  
pp. 443-505 ◽  
Author(s):  
I.M. Band ◽  
Yu.I. Kharitonov ◽  
M.B. Trzhaskovskaya
1996 ◽  
Vol 437 ◽  
Author(s):  
G.J. Mankey ◽  
K. Subramanian ◽  
R.L. Stockbauer ◽  
R.L. Kurtz

AbstractWe present measurements of the evolution with film thickness of the 3d electronic states at the Fermi energy of ultrathin Ni films. The morphology and thickness of the films is determined from x-ray photoelectron spectroscopy. x-ray photoelectron diffraction and x-ray magnetic linear dichroism using synchrotron radiation. Photoelectron angular distributions were measured using an ellipsoidal mirror analyzer. Even at submonolayer Ni coverages, the 3d electronic states exhibit bulk-like properties. This is attributed to the short screening length of electrons in metals, the localization of the 3d electrons, the similarity of the Ni and Cu ion cores, and finally the interaction with the underlying fcc periodic potential.


1999 ◽  
Vol 09 (01n02) ◽  
pp. 1-10 ◽  
Author(s):  
K. ISHII ◽  
T. SATOH ◽  
S. MATSUYAMA ◽  
H. YAMAZAKI ◽  
Y. TOKAI ◽  
...  

An aluminum target was bombarded with 1.5 MeV protons and continuous x-rays were measured at the angles of 45°, 90° and 135° with respect to the beam direction. By investigating the shape of the x-ray energy spectrum, it was recognized that, the continuous x-rays below 12 keV are atomic bremsstrahlung (AB) and those of above 12 keV are nuclear bremsstrahlung (NB), and AB and NB are mingled in the energy region of around 12 keV The x-ray energy dependence of angular distributions presented well a change from the process of AB to that of NB in the continuous x-ray spectrum. Interference between AB and NB were discussed on the basis of PWBA theory. Continuous x-ray production cross sections were calculated on the basis of PWBA BEA and a semi-classical theory and compared with the experimental results. The theoretical prediction reproduced well the experimental cross sections over the wide range of 6 orders in magnitude and of 2 keV – 35 keV in the energy except for the energy region mingled with AB and NB. The ratio of the theoretical cross sections to the experimental ones showed an interference effect between AB and NB in their mingled region.


Sign in / Sign up

Export Citation Format

Share Document