Abelson virus-transformed lymphocytes: Null cells that modulate H-2

Cell ◽  
1977 ◽  
Vol 12 (3) ◽  
pp. 683-690 ◽  
Author(s):  
Diane McMahon Pratt ◽  
Jack Strominger ◽  
Robertson Parkman ◽  
David Kaplan ◽  
Jerrold Schwaber ◽  
...  
Keyword(s):  
1983 ◽  
Vol 3 (4) ◽  
pp. 596-604
Author(s):  
C A Whitlock ◽  
S F Ziegler ◽  
O N Witte

Some molecular changes which correlate with the tumorigenic progression of neoplastic cells can best be studied with in vitro cell lines that represent each stage in the progression. Lymphoid cells infected by Abelson murine leukemia virus exhibit a wide range of growth potential in vitro and in vivo. Uncloned populations that are poorly oncogenic early after infection become progressively more oncogenic with successive passages of the cells in culture. In such mass cultures, it is difficult to evaluate whether a rare subpopulation of highly oncogenic cells becomes dominant in the culture or whether the individual cells progress in oncogenic phenotype. To examine this latter possibility, Abelson virus-infected lymphoid cells were cloned by limiting-dilution culture 10 days postinfection. We isolated two clones that grew poorly in agar, required feeder layers of adherent bone marrow cells for growth in liquid culture, and were extremely slow to form tumors in syngeneic animals. Both clones, after passage in the presence of adherent feeder layers for 3 months, grew well in liquid and agar-containing cultures in the absence of feeder layers and formed tumors in animals at a rapid rate. The progression of these clonal cell lines to a more malignant growth phenotype occurred in the absence of detectable changes in the concentration, half-life, phosphorylation, in vitro kinase activity, or cell localization of the Abelson virus-encoded transforming protein. No change in the concentration or arrangement of integrated Abelson viral DNA sequences was detected in either clone. Thus, perhaps changes in the expression of cellular genes would appear to alter the growth properties of lymphoid cells after their initial transformation by Abelson virus. Such cellular changes could complement the activity of the Abelson virus transforming protein in producing the fully malignant growth phenotype.


1985 ◽  
Vol 5 (2) ◽  
pp. 390-397 ◽  
Author(s):  
W D Cook

The infectious complex of Abelson murine leukemia virus was altered by replacing its usual helper virus, Moloney leukemia virus, with radiation leukemia virus (RadLV). After intrathymic injection of the Abelson-RadLV complex, thymomas arose rapidly, as described previously for injection of the Abelson-Moloney complex. Cell lines were derived from thymomas induced by each Abelson virus complex and were classified according to normal thymus cell phenotypes. Each virus complex induced some cell lines which were like a 0.7% subpopulation of murine thymocytes in that they failed to express the Thy-1 cell-surface antigen. These lines are thus far indistinguishable from some Abelson-derived bone marrow transformants classified as pre-B cells. However, the Abelson-Moloney complex induced some cell lines which expressed low levels of Thy-1 and which shared most markers with immature blast cells of the thymic medulla, whereas the Abelson-RadLV complex induced some lines which were clearly like thymic cortex blast cells. Thus, Abelson virus can induce thymoma cell lines of at least two, and possibly three, distinct phenotypes corresponding to normal thymocyte blast subsets, the determination of which can be influenced by helper virus sequences.


Cell ◽  
1985 ◽  
Vol 41 (3) ◽  
pp. 677-683 ◽  
Author(s):  
Wendy D. Cook ◽  
Donald Metcalf ◽  
Nicos A. Nicola ◽  
Antony W. Burgess ◽  
Francesca Walker

1978 ◽  
Vol 147 (4) ◽  
pp. 1126-1141 ◽  
Author(s):  
N Rosenberg ◽  
D Baltimore

Abelson murine leukemia virus (A-MuLV)-transformed fibroblast nonproducer cells were used to prepare A-MuLV stocks containing a number of different helper viruses. The oncogenicity of the A-MuLV stocks was tested by animal inoculation and their ability to transform normal mouse bone marrow cells was measured in vitro. All of the A-MuLV stocks transformed fibroblast cells efficiently. However, only A-MuLV stocks prepared with helper viruses that are highly oncogenic were efficient in vivo and in vitro in hematopoietic cell transformation. In addition, inefficient helpers did not establish a stable infection in lymphoid nonproducer cells. Thus, helper virus has a more central role in lymphoid cell transformation than in fibroblast cell transformation.


2000 ◽  
Vol 74 (20) ◽  
pp. 9479-9487 ◽  
Author(s):  
Justin Mostecki ◽  
Anne Halgren ◽  
Arash Radfar ◽  
Zohar Sachs ◽  
James Ravitz ◽  
...  

ABSTRACT In many tumor systems, analysis of cells for loss of heterozygosity (LOH) has helped to clarify the role of tumor suppressor genes in oncogenesis. Two important tumor suppressor genes, p53 and the Ink4a/Arf locus, play central roles in the multistep process of Abelson murine leukemia virus (Ab-MLV) transformation. p53 and the p53 regulatory protein, p19Arf, are required for the apoptotic crisis that characterizes the progression of primary transformed pre-B cells to fully malignant cell lines. To search for other tumor suppressor genes which may be involved in the Ab-MLV transformation process, we used endogenous proviral markers and simple-sequence length polymorphism analysis to screen Abelson virus-transformed pre-B cells for evidence of LOH. Our survey reinforces the role of the p53-p19 regulatory pathway in transformation; 6 of 58 cell lines tested had lost sequences on mouse chromosome 4, including theInk4a/Arf locus. Consistent with this pattern, a high frequency of primary pre-B-cell transformants derived fromInk4a/Arf +/− mice became established cell lines. In addition, half of them retained the single copy of the locus when the transformation process was complete. These data demonstrate that a single copy of the Ink4a/Arf locus is not sufficient to fully mediate the effects of these genes on transformation.


Nature ◽  
1979 ◽  
Vol 278 (5704) ◽  
pp. 551-553 ◽  
Author(s):  
MICHAEL Boss ◽  
MELVYN GREAVES ◽  
NATALIE TEICH

1990 ◽  
Vol 10 (8) ◽  
pp. 4365-4369
Author(s):  
A Engelman ◽  
N Rosenberg

Lymphoid cells transformed by temperature-sensitive Abelson virus die at the nonpermissive temperature. This property was exploited to show that bcr/abl and v-src but not myc and ras can replace the transforming signal of v-abl, a result suggesting that the former but not the latter oncogenes transform lymphoid cells via a similar pathway.


Sign in / Sign up

Export Citation Format

Share Document