Destruction of U2, U4, or U6 small nuclear RNA blocks Trans splicing in trypanosome cells

Cell ◽  
1990 ◽  
Vol 61 (3) ◽  
pp. 459-466 ◽  
Author(s):  
Christian Tschudi ◽  
Elisabetta Ullu

1990 ◽  
Vol 10 (4) ◽  
pp. 1764-1768
Author(s):  
R F Liou ◽  
T Blumenthal

The nematode Caenorhabditis elegans has an unusual small nuclear RNA, containing a 100-nucleotide RNA molecule, spliced leader RNA, which donates its 5' 22 nucleotides to a variety of recipient RNAs by a trans-splicing reaction. The spliced leader RNA has a 5' trimethylguanosine (TMG) cap, which becomes the 5' end of trans-spliced mRNAs. We found that mature trans-spliced mRNAs were immunoprecipitable with anti-TMG cap antibodies and that TMG-containing dinucleotides specifically competed with the trans-spliced mRNAs for antibody binding. We also found that these mRNAs retained their TMG caps throughout development and that the TMG-capped mRNAs were polysome associated. Since the large majority of C. elegans mRNAs are not trans-spliced, the addition of the spliced leader and its TMG cap to a limited group of recipient RNAs may create a functionally distinct subset of mRNAs.



1990 ◽  
Vol 10 (4) ◽  
pp. 1764-1768 ◽  
Author(s):  
R F Liou ◽  
T Blumenthal

The nematode Caenorhabditis elegans has an unusual small nuclear RNA, containing a 100-nucleotide RNA molecule, spliced leader RNA, which donates its 5' 22 nucleotides to a variety of recipient RNAs by a trans-splicing reaction. The spliced leader RNA has a 5' trimethylguanosine (TMG) cap, which becomes the 5' end of trans-spliced mRNAs. We found that mature trans-spliced mRNAs were immunoprecipitable with anti-TMG cap antibodies and that TMG-containing dinucleotides specifically competed with the trans-spliced mRNAs for antibody binding. We also found that these mRNAs retained their TMG caps throughout development and that the TMG-capped mRNAs were polysome associated. Since the large majority of C. elegans mRNAs are not trans-spliced, the addition of the spliced leader and its TMG cap to a limited group of recipient RNAs may create a functionally distinct subset of mRNAs.





Tumor Biology ◽  
2014 ◽  
Vol 36 (4) ◽  
pp. 2809-2814 ◽  
Author(s):  
Farid Keramati ◽  
Ehsan Seyedjafari ◽  
Parviz Fallah ◽  
Masoud Soleimani ◽  
Hossein Ghanbarian


1991 ◽  
Vol 19 (3) ◽  
pp. 340S-340S
Author(s):  
YUNQIAN HU ◽  
JOHN W. S. BROWN ◽  
ROBBIE WAUGH ◽  
PHILIP C. TURNER




1994 ◽  
Vol 14 (9) ◽  
pp. 6337-6349 ◽  
Author(s):  
S E Wells ◽  
M Ares

Binding of U2 small nuclear ribonucleoprotein (snRNP) to the pre-mRNA is an early and important step in spliceosome assembly. We searched for evidence of cooperative function between yeast U2 small nuclear RNA (snRNA) and several genetically identified splicing (Prp) proteins required for the first chemical step of splicing, using the phenotype of synthetic lethality. We constructed yeast strains with pairwise combinations of 28 different U2 alleles with 10 prp mutations and found lethal double-mutant combinations with prp5, -9, -11, and -21 but not with prp3, -4, -8, or -19. Many U2 mutations in highly conserved or invariant RNA structures show no phenotype in a wild-type PRP background but render mutant prp strains inviable, suggesting that the conserved but dispensable U2 elements are essential for efficient cooperative function with specific Prp proteins. Mutant U2 snRNA fails to accumulate in synthetic lethal strains, demonstrating that interaction between U2 RNA and these four Prp proteins contributes to U2 snRNP assembly or stability. Three of the proteins (Prp9p, Prp11p, and Prp21p) are associated with each other and pre-mRNA in U2-dependent splicing complexes in vitro and bind specifically to synthetic U2 snRNA added to crude splicing extracts depleted of endogenous U2 snRNPs. Taken together, the results suggest that Prp9p, -11p, and -21p are U2 snRNP proteins that interact with a structured region including U2 stem loop IIa and mediate the association of the U2 snRNP with pre-mRNA.



1987 ◽  
Vol 262 (1) ◽  
pp. 75-81
Author(s):  
R Reddy ◽  
D Henning ◽  
G Das ◽  
M Harless ◽  
D Wright


1984 ◽  
Vol 122 (2) ◽  
pp. 838-844 ◽  
Author(s):  
J.M. Capasso ◽  
M.A. Docherty ◽  
A. Ray ◽  
E.D. Kaplan ◽  
G.L. Eliceiri


1993 ◽  
Vol 21 (11) ◽  
pp. 2649-2653 ◽  
Author(s):  
Chisato Ushida ◽  
Akira Muto


Sign in / Sign up

Export Citation Format

Share Document