Variable S-phase duration in Vicia faba root meristem cells

1978 ◽  
Vol 18 (1) ◽  
pp. 1-8 ◽  
Author(s):  
Morton W. Miller ◽  
Annie Brulfert ◽  
Gary E. Kaufman
Cells ◽  
2021 ◽  
Vol 10 (12) ◽  
pp. 3409
Author(s):  
Aneta Żabka ◽  
Natalia Gocek ◽  
Konrad Winnicki ◽  
Paweł Szczeblewski ◽  
Tomasz Laskowski ◽  
...  

Experiments on Vicia faba root meristem cells exposed to 150 µM cadmium chloride (CdCl2) were undertaken to analyse epigenetic changes, mainly with respect to DNA replication stress. Histone modifications examined by means of immunofluorescence labeling included: (1) acetylation of histone H3 on lysine 56 (H3K56Ac), involved in transcription, S phase, and response to DNA damage during DNA biosynthesis; (2) dimethylation of histone H3 on lysine 79 (H3K79Me2), correlated with the replication initiation; (3) phosphorylation of histone H3 on threonine 45 (H3T45Ph), engaged in DNA synthesis and apoptosis. Moreover, immunostaining using specific antibodies against 5-MetC-modified DNA was used to determine the level of DNA methylation. A significant decrease in the level of H3K79Me2, noted in all phases of the CdCl2-treated interphase cell nuclei, was found to correspond with: (1) an increase in the mean number of intranuclear foci of H3K56Ac histones (observed mainly in S-phase), (2) a plethora of nuclear and nucleolar labeling patterns (combined with a general decrease in H3T45Ph), and (3) a decrease in DNA methylation. All these changes correlate well with a general viewpoint that DNA modifications and post-translational histone modifications play an important role in gene expression and plant development under cadmium-induced stress conditions.


2012 ◽  
Vol 36 (12) ◽  
pp. 1251-1259 ◽  
Author(s):  
Freija Verdoodt ◽  
Maxime Willems ◽  
Ineke Dhondt ◽  
Wouter Houthoofd ◽  
Wim Bert ◽  
...  

1980 ◽  
Vol 85 (1) ◽  
pp. 108-115 ◽  
Author(s):  
C J Rivin ◽  
W L Fangman

When the growth rate of the yeast Saccharomyces cerevisiae is limited with various nitrogen sources, the duration of the S phase is proportional to cell cycle length over a fourfold range of growth rates (C.J. Rivin and W. L. Fangman, 1980, J. Cell Biol. 85:96-107). Molecular parameters of the S phases of these cells were examined by DNA fiber autoradiography. Changes in replication fork rate account completely for the changes in S-phase duration. No changes in origin-to-origin distances were detected. In addition, it was found that while most adjacent replication origins are activated within a few minutes of each other, new activations occur throughout the S phase.


1960 ◽  
Vol 7 (1) ◽  
pp. 79-85 ◽  
Author(s):  
J. R. K. Savage ◽  
G. J. Neary ◽  
H. J. Evans

The observation was made previously that the reduction in radiosensitivity in Vicia faba (as measured by postirradiation root growth) by prolonging the exposure time from about 10 minutes to 24 hours is much less marked at 3°C. than at 19°C. If chromosome damage is mainly responsible for the reduced root growth, this observation might be explained by a smaller drop in the "two-hit" aberration component, resulting from an increased time for which breaks are available for rejoining at 3°C. This hypothesis was tested by comparing chromatid aberration frequencies in root meristem cells produced by 105 rads of 60Co γ rays, given at dose rates of 19.4 and 0.073 rads per minute. Beans were maintained in aerated water at 2°C. prior to and during irradiation, and at this temperature the rate of development of cells was such that the two different exposure times both occupied a period during which the cell sensitivity was approximately constant. Immediately subsequent to irradiation, the roots were returned to 19°C. and examined cytologically. All chromatid aberrations were less frequent after low dose rate treatment, but only the chromatid interchange reduction was significant. The average time for which breaks are available for reunion, calculated from Lea's G function, was found to be 12 hours (95 per cent C.L. 6 to 24 hours).


Agrica ◽  
2017 ◽  
Vol 6 (1) ◽  
pp. 66
Author(s):  
Roopam Saxena ◽  
Amit Vaish ◽  
Somesh Yadav

Sign in / Sign up

Export Citation Format

Share Document