Mechanical behavior of glass ionomer cements affected by long-term storage in water

1994 ◽  
Vol 10 (1) ◽  
pp. 37-44 ◽  
Author(s):  
Maria-Angeles Cattani-Lorente ◽  
Chantal Godin ◽  
Jean-Marc Meyer
2005 ◽  
Vol 6 (2) ◽  
pp. 72-79 ◽  
Author(s):  
Filiz Yalcin

Abstract This study investigated weight changes of seven different light-cured composite restorative materials, one polyacid glass ionomer compomer, and one light-cured glass-ionomer cement following short-term and long-term storage in water. Two packable composites, three universal (hybrid) composites, one microglass composite, one polyacid glass ionomer resin composite (compomer), one microhybrid low-viscosity (flowable) composite, and one light cured glass ionomer composite cement were evaluated in this study. The weight changes of these specimens were measured daily (short-term storage), and they were measured after six weeks (long-term storage) using an electronic analytical balance. A significant difference was found in Ionoliner, Dyract AP, Opticor flow, Charisma, and Solitare 2, but no significant difference was found in the others (Filtek Z 250, Filtek P60, TPH Spectrum, and Valux Plus). Weight change showed a tendency to increase with the time of water storage. The greatest weight change occurred in light-cured glass ionomer composite cement (Ionoliner), which is followed in order by the weight changes in Dyract AP, Opticor Flow, Charisma, Solitare 2, Filtek Z250, Filtek P60, TPH Spectrum; Valux Plus had the least amount of change. Citation Keyf F, Yalcin F. The Weight Change of Various Light-Cured Restorative Materials Stored in Water. J Contemp Dent Pract 2005 May;(6)2:072-079.


2021 ◽  
Author(s):  
Shuang Xie ◽  
Huidong Wen ◽  
Yong Wang ◽  
Pengrong Lin ◽  
Xiaochen Xie ◽  
...  

2001 ◽  
Vol 6 (2) ◽  
pp. 3-14 ◽  
Author(s):  
R. Baronas ◽  
F. Ivanauskas ◽  
I. Juodeikienė ◽  
A. Kajalavičius

A model of moisture movement in wood is presented in this paper in a two-dimensional-in-space formulation. The finite-difference technique has been used in order to obtain the solution of the problem. The model was applied to predict the moisture content in sawn boards from pine during long term storage under outdoor climatic conditions. The satisfactory agreement between the numerical solution and experimental data was obtained.


Diabetes ◽  
1997 ◽  
Vol 46 (3) ◽  
pp. 519-523 ◽  
Author(s):  
G. M. Beattie ◽  
J. H. Crowe ◽  
A. D. Lopez ◽  
V. Cirulli ◽  
C. Ricordi ◽  
...  

2020 ◽  
Vol 59 (SL) ◽  
pp. SLLC01 ◽  
Author(s):  
Tomoki Murota ◽  
Toshiki Mimura ◽  
Ploybussara Gomasang ◽  
Shinji Yokogawa ◽  
Kazuyoshi Ueno

Author(s):  
O. Semenenko ◽  
O. Vodchyts ◽  
V. Koverga ◽  
R. Lukash ◽  
O. Lutsenko

The introduction and active use of information transmission and storage systems in the Ministry of Defense (MoD) of Ukraine form the need to develop ways of guaranteed removal of data from media after their use or long-term storage. Such a task is an essential component of the functioning of any information security system. The article analyzes the problems of guaranteed destruction of information on magnetic media. An overview of approaches to the guaranteed destruction of information on magnetic media of different types is presented, and partial estimates of the effectiveness of their application are given by some generally accepted indicators of performance evaluation. The article also describes the classification of methods of destruction of information depending on the influence on its medium. The results of the analysis revealed the main problems of application of software methods and methods of demagnetization of the information carrier. The issue of guaranteed destruction of information from modern SSD devices, which are actively used in the formation of new systems of information accumulation and processing, became particularly relevant in the article. In today's conditions of development of the Armed Forces of Ukraine, methods of mechanical and thermal destruction are more commonly used today. In the medium term, the vector of the use of information elimination methods will change towards the methods of physical impact by the pulsed magnetic field and the software methods that allow to store the information storage device, but this today requires specialists to develop new ways of protecting information in order to avoid its leakage.


Sign in / Sign up

Export Citation Format

Share Document