First trimester prenatal diagnosis of trisomy 21 in fetal cells from maternal blood

The Lancet ◽  
1992 ◽  
Vol 340 (8826) ◽  
pp. 1033 ◽  
Author(s):  
Sherman Elias ◽  
James Price ◽  
Michael Dockter ◽  
Stephen Wachtel ◽  
Avirachan Tharapel ◽  
...  
2005 ◽  
Vol 21 (1) ◽  
pp. 125-133 ◽  
Author(s):  
Young Ho Yang ◽  
Eun Suk Yang ◽  
Ja Young Kwon ◽  
In Kyu Kim ◽  
Yong Won Park

2021 ◽  
Vol 22 (4) ◽  
pp. 2001
Author(s):  
Silvia Spena ◽  
Chiara Cordiglieri ◽  
Isabella Garagiola ◽  
Flora Peyvandi

Hemophilia is an X-linked recessive bleeding disorder. In pregnant women carrier of hemophilia, the fetal sex can be determined by non-invasive analysis of fetal DNA circulating in the maternal blood. However, in case of a male fetus, conventional invasive procedures are required for the diagnosis of hemophilia. Fetal cells, circulating in the maternal bloodstream, are an ideal target for a safe non-invasive prenatal diagnosis. Nevertheless, the small number of cells and the lack of specific fetal markers have been the most limiting factors for their isolation. We aimed to develop monoclonal antibodies (mAbs) against the ribosomal protein RPS4Y1 expressed in male cells. By Western blotting, immunoprecipitation and immunofluorescence analyses performed on cell lysates from male human hepatoma (HepG2) and female human embryonic kidney (HEK293) we developed and characterized a specific monoclonal antibody against the native form of the male RPS4Y1 protein that can distinguish male from female cells. The availability of the RPS4Y1-targeting monoclonal antibody should facilitate the development of novel methods for the reliable isolation of male fetal cells from the maternal blood and their future use for non-invasive prenatal diagnosis of X-linked inherited disease such as hemophilia.


1999 ◽  
Vol 19 (7) ◽  
pp. 648-652 ◽  
Author(s):  
Irene M. de Graaf ◽  
Marja E. Jakobs ◽  
Nico J. Leschot ◽  
Ilya Ravkin ◽  
Simon Goldbard ◽  
...  

2018 ◽  
Vol 5 (3) ◽  
pp. 139-143
Author(s):  
Sarang Younesi ◽  
Shahram Savad ◽  
Soudeh Ghafouri-Fard ◽  
Mohammad Mahdi Taheri-Amin ◽  
Pourandokht Saadati ◽  
...  

2002 ◽  
Vol 48 (12) ◽  
pp. 2115-2123 ◽  
Author(s):  
T Vauvert Hviid

Abstract Background: During recent years, much attention has been paid to the possibility of using fetal cells circulating in the pregnant woman’s blood for prenatal diagnosis of genetic or chromosomal abnormalities. Although successes have been achieved in enrichment procedures for fetal cells from maternal blood samples, the use of such an approach for genotyping by molecular biology techniques in a more routine setting has been hampered by the large contamination of maternal nucleated blood cells in the cell isolates. Therefore, a new method based on in-cell PCR is described, which may overcome this problem. Methods and Results: Mixtures of cells from two different individuals were fixed and permeabilized in suspension. After coamplification of a DNA sequence specific for one of the individuals and the DNA sequence to be genotyped, the two PCR products were linked together in the fixed cells positive for both DNA sequences by complementary primer tails and further amplification steps. In a model system of mixtures of male and female CD71-positive cells from umbilical cord blood attached to immunomagnetic particles, a Y-chromosome-specific sequence (TSPY) was linked to a polymorphic HLA-DPB1 sequence only in the male cells, leading to the correct HLA-DPB1 genotyping of the male by DNA sequencing of a nested, linked TSPY-HLA-DPB1 PCR product. Conclusion: This approach might be usable on mixed cell populations of fetal and maternal cells obtained after conventional cell-sorting techniques on maternal peripheral vein blood.


2007 ◽  
Vol 22 (8) ◽  
pp. 2267-2272 ◽  
Author(s):  
Carolina J. Jorgez ◽  
Dianne D. Dang ◽  
Ronald Wapner ◽  
Antonio Farina ◽  
Joe Leigh Simpson ◽  
...  

2010 ◽  
Vol 56 (1) ◽  
pp. 90-98 ◽  
Author(s):  
Yu K Tong ◽  
Shengnan Jin ◽  
Rossa WK Chiu ◽  
Chunming Ding ◽  
KC Allen Chan ◽  
...  

Abstract Background: The use of fetal DNA in maternal plasma for noninvasive prenatal diagnosis of trisomy 21 (T21) is an actively researched area. We propose a novel method of T21 detection that combines fetal-specific epigenetic and genetic markers. Methods: We used combined bisulfite restriction analysis to search for fetal DNA markers on chromosome 21 that were differentially methylated in the placenta and maternal blood cells and confirmed any target locus with bisulfite sequencing. We then used methylation-sensitive restriction endonuclease digestion followed by microfluidics digital PCR analysis to investigate the identified marker. Chromosome-dosage analysis was performed by comparing the dosage of this epigenetic marker with that of the ZFY (zinc finger protein, Y-linked) gene on chromosome Y. Results: The putative promoter of the HLCS (holocarboxylase synthetase) gene was hypermethylated in the placenta and hypomethylated in maternal blood cells. A chromosome-dosage comparison of the hypermethylated HLCS and ZFY loci could distinguish samples of T21 and euploid placental DNA. Twenty-four maternal plasma samples from euploid pregnancies and 5 maternal plasma samples from T21 pregnancies were analyzed. All but 1 of the euploid samples were correctly classified. Conclusions: The epigenetic–genetic chromosome-dosage approach is a new method for noninvasive prenatal detection of T21. The epigenetic part of the analysis can be applied to all pregnancies. Because the genetic part of the analysis uses paternally inherited, fetal-specific genetic markers that are abundant in the genome, broad population coverage should be readily achievable. This approach has the potential to become a generally usable technique for noninvasive prenatal diagnosis.


Sign in / Sign up

Export Citation Format

Share Document