A finite element model of wave-structure interactions in the time domain

1988 ◽  
Vol 10 (4) ◽  
pp. 229-238 ◽  
Author(s):  
J.F. Lee ◽  
J.W. Leonard
2012 ◽  
Vol 479-481 ◽  
pp. 1205-1208
Author(s):  
Chern Hwa Chen ◽  
Yuh Yi Lin ◽  
Cheng Hsin Chang ◽  
Shun Chin Yang ◽  
Yung Chang Cheng ◽  
...  

To determine its actual dynamic responses under the wind loads, modal identification from the field tests was carried out for the Kao Ping Hsi cable-stayed bridge in southern Taiwan. The rational finite element model has been established for the bridge. With the refined finite element model, a nonlinear analysis in time domain is employed to determine the buffeting response of the bridge. Through validation of the results against those obtained by the frequency domain approach, it is confirmed that the time domain approach adopted herein is applicable for the buffeting analysis of cable-stayed bridges.


2011 ◽  
Vol 11 (01) ◽  
pp. 101-125 ◽  
Author(s):  
C. H. CHEN ◽  
C. I. OU

To determine its actual dynamic responses under the wind loads, modal identification from the field tests was carried out for the Kao Ping Hsi cable-stayed bridge in southern Taiwan. The dynamic characteristics of the bridge identified by a continuous wavelet transform algorithm are compared with those obtained by the finite element analysis. The finite element model was then modified and refined based on the field test results. The results obtained from the updated finite element model were shown to agree well with the field identified results for the first few modes in the vertical, transverse, and torsional directions. This has the indication that a rational finite element model has been established for the bridge. With the refined finite element model, a nonlinear analysis in time domain is employed to determine the buffeting response of the bridge. Through validation of the results against those obtained by the frequency domain approach, it is confirmed that the time domain approach adopted herein is applicable for the buffeting analysis of cable-stayed bridges.


Author(s):  
Bruna Nabuco ◽  
Tobias Friis ◽  
Marius Tarpø ◽  
Sandro Amador ◽  
Evangelos I. Katsanos ◽  
...  

This paper aims to demonstrate how to estimate strains of fixed structures considering cases with nonlinearities based on parameters determined from one linear case. Both simulated and experimental data have been evaluated. A finite element model was used to obtain the simulated responses. Accelerations and strains were measured along the application of random loading to a fixed structural model for the experimental data. Operational Modal Analysis has been considered in the time domain in order to identify the modal properties. Nonlinearities are included as friction is imposed on the models.


2021 ◽  
pp. 147592172110092
Author(s):  
Suryakanta Biswal ◽  
Marios K Chryssanthopoulos ◽  
Ying Wang

Vibration-based condition identification of bolted connections can benefit the effective maintenance and operation of steel structures. Existing studies show that modal parameters are not sensitive to such damage as loss of preload. In contrast, structural responses in the time domain contain all the information regarding a structural system. Therefore, this study aims to exploit time-domain data directly for condition identification of bolted connection. Finite element model updating is carried out based on the vibration test data of a steel frame, with various combinations of bolts with loss of preload, representing different damage scenarios. It is shown that the match between the numerically simulated and measured acceleration responses of the steel frame cannot be achieved. The reason is that time-dependent nonlinearity is generated in bolted connections during dynamic excitation of the steel frame. To capture the nonlinearity, a virtual viscous damper is proposed. By using the proposed damper alongside the updated system matrices of the finite element model, the time-domain acceleration responses are estimated with great consistency with the measured responses. The results demonstrate that the proposed virtual damper is not only effective in estimating the time-domain acceleration responses in each damage case, but also has the potential for condition identification of bolted connections with such small damage as just one bolt with loss of preload. It can also be applied to other challenging scenarios of condition identification, where modal parameters are not sensitive to the damage.


Sensors ◽  
2022 ◽  
Vol 22 (1) ◽  
pp. 393
Author(s):  
Yunfeng Zou ◽  
Xuandong Lu ◽  
Jinsong Yang ◽  
Tiantian Wang ◽  
Xuhui He

Structural damage identification technology is of great significance to improve the reliability and safety of civil structures and has attracted much attention in the study of structural health monitoring. In this paper, a novel structural damage identification method based on transmissibility in the time domain is proposed. The method takes the discrepancy of transmissibility of structure response in the time domain before and after damage as the basis of finite element model updating. The damage is located and quantified through iteration by minimizing the difference between the measurements at gauge locations and the reconstruction response extrapolated by the finite element model. Taking advantage of the response reconstruction method based on empirical mode decomposition, damage information can be obtained in the absence of prior knowledge on excitation. Moreover, this method directly collects time-domain data for identification without modal identification and frequent time–frequency conversion, which can greatly improve efficiency on the premise of ensuring accuracy. A numerical example is used to demonstrate the overall damage identification method, and the study of measurement noise shows that the method has strong robustness. Finally, the present work investigates the method through a simply supported overhanging beam. The experiments collect the vibration strain signals of the beam via resistance strain gauges. The comparison between identification results and theoretical values shows the effectiveness and accuracy of the method.


2011 ◽  
Vol 86 ◽  
pp. 323-326
Author(s):  
Guang Hao Dai ◽  
Chang Wei Gao ◽  
Yong Heng Liu

Shock load spectrum of elastic support gearbox is confirmed by Federation Wehrmacht vessel construction rules BV0430/85 standard, and convert into equivalent double-triangular wave acceleration shock load. We take one elastic support gearbox which used in a vessel as computational study subject. With the help of ABAQUS software, we establish finite element model of elastic support gearbox and put double-triangular shock load into finite element model. Taking finite element analysis method do time domain response characteristics numerical simulation research of elastic support gearbox with limited bit and unlimited bit design, respectively, under shock load effect.


2015 ◽  
Vol 12 (6) ◽  
pp. 1182-1201 ◽  
Author(s):  
Antônio Marcos Gonçalves de Lima ◽  
Noureddine Bouhaddi ◽  
Domingos Alves Rade ◽  
Marcelo Belonsi

Sign in / Sign up

Export Citation Format

Share Document