Calcium binding by parathyroid cell plasma membranes

Cell Calcium ◽  
1987 ◽  
Vol 8 (2) ◽  
pp. 171-183 ◽  
Author(s):  
Federica Wolf ◽  
Antonio Scarpa
1988 ◽  
Vol 139 (1) ◽  
pp. 267-286
Author(s):  
H. B. Pollard ◽  
A. L. Burns ◽  
E. Rojas

Membranes of secretory vesicles fuse with each other and with plasma membranes during exocytosis in many different cell types. The probable role of calcium in the process is now widely accepted, and it is possible that at least one cytosolic mediator of calcium action is synexin. Synexin is a 47,000 Mr calcium-binding protein, initially discovered in the bovine adrenal medulla, which binds to granule membranes and to inner aspects of chromaffin cell plasma membranes. Synexin causes chromaffin granules to aggregate, and such aggregates can be caused to fuse in the additional presence of arachidonic acid. Synexin also mediates the direct fusion of liposomes and chromaffin granule ghosts. To understand better the mechanisms of membrane fusion promoted by synexin we have attempted to define the primary sequence of the protein. Our initial efforts were directed towards purification of bovine synexin in sufficient amounts to allow us to sequence tryptic peptides. However, as the project progressed we also directed our attention to human synexin, preparing peptides from this protein as well. From analysis of bovine peptides we learned that the synexin molecule might be closely related to a class of proteins including lipocortin I, calpactin (p36), endonexin II, protein II and calelectrin 67K. Complete analysis of a human synexin cDNA clone revealed strong homology with bovine synexin. The analysis also showed that synexin contained a unique, long, highly hydrophobic N-terminal leader sequence followed by a characteristic four-fold repeat homologous with those found in other members of the synexin gene family. The highly hydrophobic character of synexin seems consistent with information previously obtained that synexin is able to insert directly into the interior of bilayers prepared not only from purified phosphatidylserine but also from biological membranes. The evidence for such insertions is a dramatic increase in the capacitance of the membrane, formed at the tip of a patch pipette, when calcium-activated synexin is applied to the bilayer. Additional evidence is the fact that synexin also forms calcium-selective channels when the protein is applied to the cytosolic aspect of the plasmalemma when that side is also exposed to calcium at sub-millimolar concentrations. Thus, the synexin molecule not only enters the membrane, but also spans it. From these and other data we have developed the concept that the fusion process may involve synexin forming a ‘hydrophobic bridge’ between two fusing membranes. Lipid movement across this bridge may then be the material basis for final fusion.(ABSTRACT TRUNCATED AT 400 WORDS)


Diabetologia ◽  
1980 ◽  
Vol 19 (5) ◽  
pp. 439-444 ◽  
Author(s):  
S. P. Naber ◽  
J. M. McDonald ◽  
L. Jarett ◽  
M. L. McDaniel ◽  
C. W. Ludvigsen ◽  
...  

1976 ◽  
Vol 251 (17) ◽  
pp. 5345-5351
Author(s):  
J M McDonald ◽  
D E Bruns ◽  
L Jarett

1984 ◽  
Vol 259 (19) ◽  
pp. 12112-12116
Author(s):  
E J Schoenle ◽  
L D Adams ◽  
D W Sammons

1986 ◽  
Vol 239 (2) ◽  
pp. 301-310 ◽  
Author(s):  
W D Sweet ◽  
F Schroeder

The functional consequences of the differences in lipid composition and structure between the two leaflets of the plasma membrane were investigated. Fluorescence of 1,6-diphenylhexa-1,3,5-triene(DPH), quenching, and differential polarized phase fluorimetry demonstrated selective fluidization by local anaesthetics of individual leaflets in isolated LM-cell plasma membranes. As measured by decreased limiting anisotropy of DPH fluorescence, cationic (prilocaine) and anionic (phenobarbital and pentobarbital) amphipaths preferentially fluidized the cytofacial and exofacial leaflets respectively. Unlike prilocaine, procaine, also a cation, fluidized both leaflets of these membranes equally. Pentobarbital stimulated 5′-nucleotidase between 0.1 and 5 mM and inhibited at higher concentrations, whereas phenobarbital only inhibited, at higher concentrations. Cationic drugs were ineffective. Two maxima of (Na+ + K+)-ATPase activation were obtained with both anionic drugs. Only one activation maximum was obtained with both cationic drugs. The maximum in activity below 1 mM for all four drugs clustered about a single limiting anisotropy value in the cytofacial leaflet, whereas there was no correlation between activity and limiting anisotropy in the exofacial leaflets. Therefore, although phenobarbital and pentobarbital below 1 mM fluidized the exofacial leaflet more than the cytofacial leaflet, the smaller fluidization in the cytofacial leaflet was functionally significant for (Na+ + K+)-ATPase. Mg2+-ATPase was stimulated at 1 mM-phenobarbital, unaffected by pentobarbital and slightly stimulated by both cationic drugs at concentrations fluidizing both leaflets. Thus the activity of (Na+ + K+)-ATPase was highly sensitive to selective fluidization of the leaflet containing its active site, whereas the other enzymes examined were little affected by fluidization of either leaflet.


1976 ◽  
Vol 154 (1) ◽  
pp. 11-21 ◽  
Author(s):  
J P Luzio ◽  
A C Newby ◽  
C N Hales

1. A rapid method for the isolation of hormonally sensitive rat fat-cell plasma membranes was developed by using immunological techniques. 2. Rabbit anti-(rat erythrocyte) sera were raised and shown to cross-react with isolated rat fat-cells. 3. Isolated rat fat-cells were coated with rabbit anti-(rat erythrocyte) antibodies, homogenized and the homogenate made to react with an immunoadsorbent prepared by covalently coupling donkey anti-(rabbit globulin) antibodies to aminocellulose. Uptake of plasma membrane on to the immunoadsorbent was monitored by assaying the enzymes adenylate cyclase and 5′-nucleotidase and an immunological marker consisting of a 125I-labelled anti-(immunoglobulin G)-anti-cell antibody complex bound to the cells before fractionation. Contamination of the plasma-membrane preparation by other subcellular fractions was also investigated. 4. By using this technique, a method was developed allowing 25-40% recovery of plasma membrane from fat-cell homogenates within 30 min of homogenization. 5. Adenylate cyclase in the isolated plasma-membrane preparation was stimulated by 5 μm-adrenaline.


Sign in / Sign up

Export Citation Format

Share Document