Simple method for dynamic stiffness and damping of floating pile groups

2011 ◽  
Vol 250-253 ◽  
pp. 2225-2228
Author(s):  
Bin Yan ◽  
Ying Hui Lv ◽  
Ping Hu

In the past many researchers studied dynamic stiffness and damping coefficients of surface and embedded rigid foundations of arbitrary shapes in the elastic homogenous half space. Dynamic stiffness and damping coefficients were obtained by using regularly shaped foundations instead of arbitrarily shaped ones. Obviously, the calculating methods were not perfect. In addition, the two parameters mentioned above were calculated only in the case of a single foundation. But the cases of two or more foundations were not presented because the interactions between foundations were not considered in all present papers. This paper eliminates two faults named above by using the assumption of the plane strain and of dynamic foundation-soil interaction factors. The calculating method of dynamic impedances presented by the paper proved to be accurate and practical.


Author(s):  
Kai Feng ◽  
Xueyuan Zhao ◽  
Zhiyang Guo

With increasing need for high-speed, high-temperature, and oil-free turbomachinery, gas foil bearings (GFBs) have been considered to be the best substitutes for traditional oil-lubricated bearings. A multi-cantilever foil bearing (MCFB), a novel GFB with multi-cantilever foil strips serving as the compliant underlying structure, was designed, fabricated, and tested. A series of static and dynamic load tests were conducted to measure the structural stiffness and equivalent viscous damping of the prototype MCFB. Experiments of static load versus deflection showed that the proposed bearing has a large mechanical energy dissipation capability and a pronounced nonlinear static stiffness that can prevents overly large motion amplitude of journal. Dynamic load tests evaluated the influence of motion amplitude, loading orientation and misalignment on the dynamic stiffness and equivalent viscous damping with respect to excitation frequency. The test results demonstrated that the dynamic stiffness and damping are strongly dependent on the excitation frequency. Three motion amplitudes were applied to the bearing housing to investigate the effects of motion amplitude on the dynamic characteristics. It is noted that the bearing dynamic stiffness and damping decreases with incrementally increasing motion amplitudes. A high level of misalignment can lead to larger static and dynamic bearing stiffness as well as to larger equivalent viscous damping. With dynamic loads applied to two orientations in the bearing midplane separately, the dynamic stiffness increases rapidly and the equivalent viscous damping declines slightly. These results indicate that the loading orientation is a non-negligible factor on the dynamic characteristics of MCFBs.


1997 ◽  
Vol 119 (1) ◽  
pp. 57-63 ◽  
Author(s):  
M. J. Goodwin ◽  
P. J. Ogrodnik ◽  
M. P. Roach ◽  
Y. Fang

This paper describes a combined theoretical and experimental investigation of the eight oil film stiffness and damping coefficients for a novel low impedance hydrodynamic bearing. The novel design incorporates a recess in the bearing surface which is connected to a standard commercial gas bag accumulator; this arrangement reduces the oil film dynamic stiffness and leads to improved machine response and stability. A finite difference method was used to solve Reynolds equation and yield the pressure distribution in the bearing oil film. Integration of the pressure profile then enabled the fluid film forces to be evaluated. A perturbation technique was used to determine the dynamic pressure components, and hence to determine the eight oil film stiffness and damping coefficients. Experimental data was obtained from a laboratory test rig in which a test bearing, floating on a rotating shaft, was excited by a multi-frequency force signal. Measurements of the resulting relative movement between bearing and journal enabled the oil film coefficients to be measured. The results of the work show good agreement between theoretical and experimental data, and indicate that the oil film impedance of the novel design is considerably lower than that of a conventional bearing.


Author(s):  
Ahmad W. Yacout

This study has theoretically analyzed the surface roughness, centripetal inertia and recess volume fluid compressibility effects on the dynamic behavior of a restrictor compensated hydrostatic thrust spherical clearance type of bearing. The stochastic Reynolds equation, with centripetal inertia effect, and the recess flow continuity equation with recess volume fluid compressibility effect have been derived to take into account the presence of roughness on the bearing surfaces. On the basis of a small perturbations method, the dynamic stiffness and damping coefficients have been evaluated. In addition to the usual bearing design parameters the results for the dynamic stiffness and damping coefficients have been calculated for various frequencies of vibrations or squeeze parameter (frequency parameter) and recess volume fluid compressibility parameter. The study shows that both of the surface roughness and the centripetal inertia have slight effects on the stiffness coefficient and remarkable effects on the damping coefficient while the recess volume fluid compressibility parameter has the major effect on the bearing dynamic characteristics. The cross dynamic stiffness showed the bearing self-aligning property and the ability to oppose whirl movements. The orifice restrictor showed better dynamic performance than that of the capillary tube.


1998 ◽  
Vol 120 (1) ◽  
pp. 63-73 ◽  
Author(s):  
K. N. Morman ◽  
E. Nikolaidis ◽  
J. Rakowska ◽  
S. Seth

A constitutive equation of the differential type is introduced to model the nonlinear viscoelastic response behavior of elastomeric bearings in large-scale system simulations for vibration assessment and component loads prediction. The model accounts for the nonlinear dependence of dynamic stiffness and damping on vibration amplitude commonly observed in the behavior of bearings made of particle-reinforced elastomers. A testing procedure for the identification of the model parameters from bearing component test data is described. The experimental and analytical results for predicting the behavior of four (4) different car bushings are presented. In an example application, the model is incorporated in an ADAMS simulation to study the dynamic behavior of a car rear suspension.


1979 ◽  
Vol 101 (4) ◽  
pp. 458-465 ◽  
Author(s):  
E. P. Gargiulo

A model has been developed to compute the dynamic stiffness and damping properties of externally pressurized, porous-wall, gas journal bearings which includes the effects of journal rotation and eccentricity. This paper presents the derivation of the governing equations and the perturbation analysis used to find the unsteady characteristics. Typical nondimensional performance curves are found and the influences of seven governing parameters are discussed. A companion paper describes an experimental investigation of porous journal bearings.


Sign in / Sign up

Export Citation Format

Share Document