Characteristics of small earthquakes and stress field: a study of reservoir induced seismicity in Quebec

2020 ◽  
Author(s):  
Sonja Gaviano ◽  
Davide Piccinini ◽  
Luisa Valoroso ◽  
Luigi Improta ◽  
Carlo Giunchi

<p>The southern Apennines range hosts a well documented case of protracted Reservoir Induced Seismicity (RIS) associated to the Pertusillo artificial lake. Since the deployment of a local monitoring network in 2001, M3+ swarms were recorded to the south of this medium-sized water reservoir. Interpretation in terms of RIS relies on the positive correlation found between seasonal water level changes and earthquake rate that increases during the winter-spring refill. We present a new high-resolution catalogue of RIS obtained by running a matched-filter (MF) detection technique on data recorded during a dense passive survey between 2005-2006. We aim at producing a very-high quality catalogue in terms of completeness magnitude (Mc) and hypocenter location accuracy to precisely track the spatio-temporal distribution of seismicity, pinpoint the activated faults, investigate the rupture mechanisms and the role played by crustal fluids in triggering RIS. All these issues are critical to improve understanding of the physical mechanism behind the RIS.</p><p>Our initial catalogue includes 406 handpicked templates recorded by 3C 24-stations temporary network run by INGV. Local magnitudes range between 0.06 and 2.63, with a MC of 0.4. Templates are correlated to the 13-month-long data streams by the MF algorithm. A matched event is declared when the average value of cross-correlation function (CC) computed over all stations exceeds 0.65. The procedure furnishes 10056 matched events with associated P- and S-phase automatic picks, weighted according to the uncertainties of template event picks and the CC values of each trace. Matched events are preliminary located in a 1-D model using the NonLinLoc software and then selected based on quality criteria. The final catalog has MC=0.1 and includes 6012 high-quality events with ML > -0.9 that are then relocated through the high-precision double-difference relative technique. We recognize four main clusters confined at 2-6 km depth within a fractured, liquid-bearing carbonate antiform characterized by high-Vp (>6.0 km/s) and very-high Vp/Vs ratio (>2.0) that indicates high-pressure pore fluids. Hypocentral alignments delineate NW-trending high-angle faults dipping to the NE or SW that measure up to 2 km along strike and dip. Prevailing extensional focal mechanisms are coherent with the fault geometry and local stress field. These results suggest re-activation of inherited thrust-faults with associated back-thrusts optimally oriented in the present extensional stress field.  </p><p>The spatiotemporal seismicity distribution indicates a positive correlation between the seasonal oscillation of the lake level and the progressive activation of the 4 clusters of seismicity. Distant clusters from the PWR are delayed with respect to the closer ones, suggesting that seismicity migrates away from the reservoir following a pore fluid pressure triggering process. The b-value is high and it also varies with time between 1.2 and 1.8 with a trend anti-correlated to the lake level. Therefore, the proportion of large earthquakes to small ones increases during the re-fill stage characterized by intense earthquake production and vice-versa. The two southern clusters, more distant from the lake, with events that delineate clear fault-zones, share the lower b-values (1.4).</p>


Author(s):  
Marcelo Assumpção ◽  
Vasile Marza ◽  
Lucas Barros ◽  
Cristiano Chimpliganond ◽  
José Eduardo Soares ◽  
...  

1988 ◽  
Vol 78 (6) ◽  
pp. 2025-2040
Author(s):  
D.W. Simpson ◽  
W.S. Leith ◽  
C.H. Scholz

Abstract The temporal distribution of induced seismicity following the filling of large reservoirs shows two types of response. At some reservoirs, seismicity begins almost immediately following the first filling of the reservoir. At others, pronounced increases in seismicity are not observed until a number of seasonal filling cycles have passed. These differences in response may correspond to two fundamental mechanisms by which a reservoir can modify the strength of the crust—one related to rapid increases in elastic stress due to the load of the reservoir and the other to the more gradual diffusion of water from the reservoir to hypocentral depths. Decreased strength can arise from changes in either elastic stress (decreased normal stress or increased shear stress) or from decreased effective normal stress due to increased pore pressure. Pore pressure at hypocentral depths can rise rapidly, from a coupled elastic response due to compaction of pore space, or more slowly, with the diffusion of water from the surface.


1992 ◽  
Vol 209 (1-4) ◽  
pp. 331-337 ◽  
Author(s):  
Hu Ping ◽  
Hu Yuliang

2013 ◽  
Vol 664 ◽  
pp. 270-275 ◽  
Author(s):  
Ming Zhong ◽  
Qiu Wen Zhang

Due to the uncertainty and complexity of the causes in reservoir-induced seismicity, the relationship between the environmental factor and the possible earthquake magnitude can be described by membership function. This study aims to propose a fuzzy method to contribute the membership function in which the normal cloud model is applied. Firstly, the cloud model is introduced in detail. Based on normal cloud model, the one-to-many mapping model is presented to deal with the fuzziness and randomness in the membership function. Finally, the case study in Yangtze Three Gorges Reservoir is presented to illustrate the membership cloud function in fuzzy risk assessment of reservoir-induced seismicity. The obtained results show that the proposed method is the viable approaches in solving the problem when the memberships are vague and imprecise.


2001 ◽  
Vol 38 (A) ◽  
pp. 232-242 ◽  
Author(s):  
Masajiro Imoto

A point process procedure can be used to study reservoir-induced seismicity (RIS), in which the intensity function representing earthquake hazard is a combination of three terms: a constant background term, an ETAS (epidemic-type aftershock sequence) term for aftershocks, and a time function derived from observation of water levels of a reservoir. This paper presents the results of such a study of the seismicity in the vicinity of the Tarbela reservoir in Pakistan. Making allowance for changes in detection capability and the background seismicity related to tectonic activity, earthquakes of magnitude ≥ 2.0, occurring between May 1978 and January 1982 and whose epicentres were within 100 km of the reservoir, were used in this analysis. Several different intensities were compared via their Akaike information criterion (AIC) values relative to those of a Poisson process. The results demonstrate that the seismicity within 20 km of the reservoir correlates with water levels of the reservoir, namely, active periods occur about 250 days after the appearance of low water levels. This suggests that unloading the reservoir activates the seismicity beneath it. Seasonal variations of the seismicity in an area up to 100 km from the reservoir were also found, but these could not be adequately interpreted by an appropriate RIS mechanism.


Sign in / Sign up

Export Citation Format

Share Document