Classification of overburden properties for underground coal gasification: laboratory studies under high temperature and in situ stress conditions

2011 ◽  
Vol 71-78 ◽  
pp. 2513-2517 ◽  
Author(s):  
Xiao Xiong Zha ◽  
Shan Shan Cheng

In order for current laboratory studies of strata performances under high temperature to be applied in Underground Coal Gasification (UCG) technology, the temperature scope (range) of UCG must be studied. Based on the heat conduction differential equation, this paper simulates the transverse section temperature distribution of UCG in the multi-physics coupling field. It demonstrates that the strata properties at a range of two meters are affected by high temperature, and the influence on sandstone is more obvious than that of coal. The temperature curves show a trend of linear to nonlinear as time goes. This paper presents the precedent of using multi-field coupling calculation to simulate UCG.


2021 ◽  
Author(s):  
Jiaying Li ◽  
Chunyan Qi ◽  
Ye Gu ◽  
Yu Ye ◽  
Jie Zhao

Abstract The characteristics of seepage capability and rock strain during reservoir depletion are important for reservoir recovery, which would significantly influence production strategy optimization. The Cretaceous deep natural gas reservoirs in Keshen Gasfield in Tarim Basin are mainly buried over 5000 m, featuring with ultra-low permeability, developed natural fractures and complex in-situ stress states. However, there is no comprehensive study on the variation of mechanical properties and seepage capability of this gas reservoir under in-situ stress conditions and most studies on stress-sensitivity are conducted under conventional triaxial or uniaxial stress conditions, which cannot truly represent in-situ stress environment. In this work, Cretaceous tight sandstone in Keshen Gasfield was tested under true-triaxial stresses conditions by an advanced geophysical imaging true-triaxial testing system to study the stress-sensitivity and anisotropy of rock stress-strain behavior, porosity and permeability. Four groups of sandstone samples are prepared as the size of 80mm×80mm×80mm, three of which are artificially fractured with different angle (0°,15°,30°) to simulate hydraulic fracturing. The test results corresponding to different samples are compared to further reveal the influence of the fracture angle on rock mechanical properties and seepage capability. The samples are in elastic strain during reservoir depletion, showing an apparent correlation with fracture angles. The porosity decreases linearly with stress loading, where the decrease rate of effective porosity of fracture samples is significantly higher than that of intact samples. The permeabilities decrease exponentially and show significant anisotropy in different principal stress directions, especially in σH direction. The mechanical properties and seepage capability of deep tight sandstone are successfully tested under true-triaxial stresses conditions in this work, which reveals the stress-sensitivity of anisotropic permeability, porosity and stress-strain behavior during gas production. The testing results proposed in this paper provides an innovative method to analyse rock mechanical and petrophysical properties and has profound significance on exploration and development of tight gas reservoir.


Energy ◽  
2010 ◽  
Vol 35 (6) ◽  
pp. 2374-2386 ◽  
Author(s):  
Sateesh Daggupati ◽  
Ramesh N. Mandapati ◽  
Sanjay M. Mahajani ◽  
Anuradda Ganesh ◽  
D.K. Mathur ◽  
...  

2013 ◽  
Vol 295-298 ◽  
pp. 3129-3136 ◽  
Author(s):  
Li Mei Zhao ◽  
Jie Liang ◽  
Lu Xin Qian

For testing the feasibility of in-situ exploring oil shale by underground coal gasification. Based on the specification analysis of coal and oil shale, through simulating the occurrence state and characteristics of coal and oil shale, the underground Co-gasification model test was carried-out. In different gasification conditions (φ(O2) are 30%、35%、40%、45%、50% and oxygen/steam) ,The temperature-field extend rules of coal and oil shale、the separate-out rules of oil shale production and influence of oil shale on the quality of gas were studied. The results show that: when φ(O2) is 40-45%, temperature-rising rate is 7°C/min、extend rate of gasification face is 0.036m/h, the extend of temperature field is continuous and stable, the temperature change of oil shale and coal are synchronously , the high temperature of oil shale can up to 1000 °C above, that can satisfied the requirement of oil-gas collecting; and the same time , The heat-value of syngas improved 26.37%; The technological parameter was obtained in this test.


2000 ◽  
Vol 23 (2) ◽  
pp. 215 ◽  
Author(s):  
RC Chaney ◽  
KR Demars ◽  
JQ Shang ◽  
KL Masterson

1975 ◽  
Vol 15 (05) ◽  
pp. 425-436 ◽  
Author(s):  
C.F. Magnani ◽  
S.M. Farouq Ali

Abstract This investigation focuses on mathematical modeling of the process of underground gasification of coal by the stream method. A one-dimensional, steady-state model consisting of five coupled differential equations was formulated, and the solution, extracted analytically, was used to develop closed-form expressions for the parameters influencing coal gasification. The model then was used for interpreting field performance curves, predicting the results of The performance curves, predicting the results of The field tests, and ascertaining the over-all process sensitivity to the input variables. The usefulness of the model was shown by establishing the parameters influencing the success or failure of parameters influencing the success or failure of an underground gasification project. Introduction One method of eliminating many of the technological and environmental difficulties encountered during the production of synthetic gas through aboveground coal gasification involves gasifying cod in situ. This process, known as underground coal gasification, was first proposed in 1868 by Sir William Siemens and is based on the controlled combustion of coal in situ. This in-situ combustion results in the production of an artificial or synthetic gas that is rich in carbon dioxide, carbon monoxide, hydrogen, and hydrocarbon gases. Despite the fact that reaction stoichiometry is a moot element of underground coal gasification, it is nonetheless believed thatcarbon dioxide is formed by the partial oxidation of coal,carbon monoxide is generated by the subsequent reduction of carbon dioxide, andthe hydrogen and hydrocarbon gases result from the water-gas reaction and carbonization of coal, respectively. To effect the controlled combustion of coal in situ, the coal seam first must be ignited and a means must be provided for supporting combustion (through injection of a suitable gasification agent) and producing the gases generated underground. Fig. 1 presents a schematic diagram of an underground gasification system that complies with these requirements. This approach to gasifying coal is known as the stream or channel method and necessitates drilling two parallel galleries, one serving as an injection gas inlet and the other as a producer gas outlet. These wells are then linked by a borehole drilled horizontally through the coal seam. Ignition occurs in the coal seam at the gas inlet and proceeds in the direction of flow. The combustion front thus generated moves essentially perpendicular to the direction of gas flow. perpendicular to the direction of gas flow.Since the technological inception of underground gasification, over 1,500 publications have appeared in the literature that bear testimony to the absence of a complete, legitimate, theoretical analysis of the underground gasification process. Given this observation, it is the basis of this paper that progress in underground coal-gasification research progress in underground coal-gasification research has suffered from the absence of "interpretative theory"; that is, it has suffered from a lack of logical, physical, and mathematical analysis of the governing and underlying aerothermochemical principles. The difficulties in formulating a principles. The difficulties in formulating a mathematical model adequately describing the numerous phenomena involved during coal gasification are indeed formidable. SPEJ P. 425


Sign in / Sign up

Export Citation Format

Share Document