Experiment on Mechanical Properties and Seepage Capability of Deep Tight Sandstone Under True-Triaxial Stresses Environment

2021 ◽  
Author(s):  
Jiaying Li ◽  
Chunyan Qi ◽  
Ye Gu ◽  
Yu Ye ◽  
Jie Zhao

Abstract The characteristics of seepage capability and rock strain during reservoir depletion are important for reservoir recovery, which would significantly influence production strategy optimization. The Cretaceous deep natural gas reservoirs in Keshen Gasfield in Tarim Basin are mainly buried over 5000 m, featuring with ultra-low permeability, developed natural fractures and complex in-situ stress states. However, there is no comprehensive study on the variation of mechanical properties and seepage capability of this gas reservoir under in-situ stress conditions and most studies on stress-sensitivity are conducted under conventional triaxial or uniaxial stress conditions, which cannot truly represent in-situ stress environment. In this work, Cretaceous tight sandstone in Keshen Gasfield was tested under true-triaxial stresses conditions by an advanced geophysical imaging true-triaxial testing system to study the stress-sensitivity and anisotropy of rock stress-strain behavior, porosity and permeability. Four groups of sandstone samples are prepared as the size of 80mm×80mm×80mm, three of which are artificially fractured with different angle (0°,15°,30°) to simulate hydraulic fracturing. The test results corresponding to different samples are compared to further reveal the influence of the fracture angle on rock mechanical properties and seepage capability. The samples are in elastic strain during reservoir depletion, showing an apparent correlation with fracture angles. The porosity decreases linearly with stress loading, where the decrease rate of effective porosity of fracture samples is significantly higher than that of intact samples. The permeabilities decrease exponentially and show significant anisotropy in different principal stress directions, especially in σH direction. The mechanical properties and seepage capability of deep tight sandstone are successfully tested under true-triaxial stresses conditions in this work, which reveals the stress-sensitivity of anisotropic permeability, porosity and stress-strain behavior during gas production. The testing results proposed in this paper provides an innovative method to analyse rock mechanical and petrophysical properties and has profound significance on exploration and development of tight gas reservoir.

SPE Journal ◽  
2021 ◽  
pp. 1-32
Author(s):  
Jingshou Liu ◽  
Wenlong Ding ◽  
Haimeng Yang ◽  
Yang Liu

Summary Fractured reservoirs account for more than one-half of the global oil and gas output and thus play a pivotal role in the world’s energy structure. Under diagenesis, rocks become dense, and tectonic fractures easily form under subsequent tectonic movement. These tectonic fractures are the main seepage conduits of tight sandstone reservoirs and are important determinants of whether a tight sandstone reservoir can have high, stable oil and gas production. The influence of multistage tectonic movement has led to well-developed fractures in the Ordos Basin in central China. In the process of reservoir development, the effective stress on the fracture surface increases because of the decrease in pore pressure, and the fracture aperture, porosity, and permeability also change accordingly. Therefore, modeling of the dual porosity and dual permeability of fractured reservoirs requires a dynamic 4D modeling process related to time. In this paper, we propose a 4D modeling method of dual porosity and dual permeability in fractured tight sandstone reservoirs. First, the porosity and permeability distribution of the reservoir matrix are established based on reservoir modeling. Based on geomechanical modeling, the density and occurrence of natural fractures are predicted by the paleostress field. The in-situ stress field is used to analyze the fracture aperture, and the variation in the fracture aperture during the development process is analyzed along with the variation in the in-situ stress in the development process to realize 4D modeling of the porosity and permeability of fractured reservoirs. The total porosity of the fracture is 0 to 8 × 10−3%, and the principal value of the planar permeability of the fracture is 0 to 3 × 10−3 µm2; the principal value of the fracture permeability is concentrated in the direction of 65 to 70° east-northeast. The simulated fracture porosity stress sensitivity index is distributed between 0 and 0.2, and the fracture permeability stress sensitivity index is distributed between 0 and 0.4. The Young’s modulus of the rock, in-situ stress parameters, and sound velocity in the rock are important factors affecting the fracture stress sensitivity.


Geofluids ◽  
2021 ◽  
Vol 2021 ◽  
pp. 1-9
Author(s):  
Yongchao Xue ◽  
Qingshuang Jin ◽  
Hua Tian

Finding ways to accelerate the effective development of tight sandstone gas reservoirs holds great strategic importance in regard to the improvement of consumption pattern of world energy. The pores and throats of the tight sandstone gas reservoir are small with abundant interstitial materials. Moreover, the mechanism of gas flow is highly complex. This paper is based on the research of a typical tight sandstone gas reservoir in Changqing Oilfield. A strong stress sensitivity in tight sandstone gas reservoir is indicated by the results, and it would be strengthened with the water production; at the same time, a rise to start-up pressure gradient would be given by the water producing process. With the increase in driving pressure gradient, the relative permeability of water also increases gradually, while that of gas decreases instead. Following these results, a model of gas-water two-phase flow has been built, keeping stress sensitivity, start-up pressure gradient, and the change of relative permeability in consideration. It is illustrated by the results of calculations that there is a reduction in the duration of plateau production period and the gas recovery factor during this period if the stress sensitivity and start-up pressure gradient are considered. In contrast to the start-up pressure gradient, stress sensitivity holds a greater influence on gas well productivity.


2000 ◽  
Vol 23 (2) ◽  
pp. 215 ◽  
Author(s):  
RC Chaney ◽  
KR Demars ◽  
JQ Shang ◽  
KL Masterson

2011 ◽  
Vol 317-319 ◽  
pp. 2432-2435
Author(s):  
Yu Xue Sun ◽  
Fei Yao ◽  
Jing Yuan Zhao

In the process of low-permeability sandstone reservoir exploitation, stress sensitivity takes place with the effective stress rises gradually, which will cause permeability decline. Allowing to the condition of in-situ stress, the study and experiment on the rock core in Jilin oil field Fuxin326 oil layer are presented. The experimental results show that the stress sensitivity of this oil layer is small; the regularity of permeability changes is in accordance with exponential function. The stress sensitivity of high permeability core is larger than that of low permeability core. Moreover, experimental and theoretical analysis shows that low permeability core has a larger permeability loss than high permeability core in loading and unloading process where elastic plastic deformation of rock will happen, which is the major reason that permeability loss can not return completely.


Sign in / Sign up

Export Citation Format

Share Document