The principle of joint network simulation in the stability analysis of rock slope and its engineering application (in Chinese)

2011 ◽  
Vol 368-373 ◽  
pp. 781-784
Author(s):  
Yong Zhang ◽  
De Xin Nie ◽  
Jiang Da He

In the process of evaluating the stability of some rock slopes, the discontinuities which mainly destroy the stability of future slope can not be understood and the locations of the slope can not be determined because of lacking of the exploration data. This paper determines the combination molds and the location of potential sliding surfaces using the method of crack network simulation to do statistics about all the discontinuities, which aims to resolving the problems of determining the locations and idiographic conformations of potential sliding surfaces in the rock slope.


2019 ◽  
Vol 2019 ◽  
pp. 1-8 ◽  
Author(s):  
Qibing Zhan ◽  
Xinjian Sun ◽  
Cheng Li ◽  
Yawei Zhao ◽  
Xinjie Zhou ◽  
...  

This study presents a stability analysis of a high-steep rock slope with two faults during excavations and evaluates the effectiveness of a proposed reinforcement method using prestressed anchor cables. A 3D finite difference model was established based on the strength reduction method using FLAC3D software. The influence of various fault conditions and the effectiveness of the reinforcement on the slope stability during the excavation process were analyzed and compared to field monitoring data. The numerical analysis and field monitoring results showed that the fault close to the slope surface (f20) was prone to the local instability under external forces caused by the excavation, but a fault further away from the slope surface (f14) had insignificant influence on the stability of the slope. Based on the numerical analysis results, the proposed reinforcement measure can increase the factor of safety (FOS) of the slope by 19.2%. The field monitoring data also showed that the displacement of the monitoring point gradually decreased after the reinforcement, and the deformation of the slope was effectively controlled.


2015 ◽  
Vol 743 ◽  
pp. 61-65
Author(s):  
Z.M. Zhao

The truss is widely used as a loaded platform in many fields and industry. The structure strength and stability analysis on the truss is researched under the operation of lifting in the paper. Firstly, the additional water gravity load is considered and calculated, which cannot be pushed out of rods during the process of lifting up from deep sea. Then the finite element model based on ANSYS/WORKBENCH software platform for the truss is created, and the boundary conditions and payloads are set into the model. Lastly, the structure strength is checked and the stability analysis is proved based on the FEM method. The results in the paper verify effectively that the strength and stability of truss under the lifting operation meet material and structure performance requirements, thus the research in the paper is of significant reference on the safe service and engineering application for truss.


2012 ◽  
Vol 226-228 ◽  
pp. 1462-1466 ◽  
Author(s):  
Ying Xue Sun ◽  
Song Chen ◽  
Shuai Ran Cheng

Mechanics behavior of unloading rock slope is essentially different from the natural rock slope . But, stability analysis of rocky slope during and after excavating still need these parameters and constitutional relation came from the natural rock slope, thus, the difference between the unloading rock mass and natural rock mass is neglected. The calculation result is quite different from the monitoring result. In order to analyze the stability of unloading rock slope properly, corresponding mechanics parameters including mechanics state, unloading degree and others should be determined and applied. In this paper, IEM - Sample Element Method and Interface Element Method expounded systematically and used to determine the corresponding mechanics parameters of a layered rock slope- Xishan slope of the Jiangyin Yangtze River Bridge. Then, IEM computer program based on Interface Element Method used to calculate the displacement of Xishan slope. Compare with displacement site-monitoring results, IEM is better than Finite Element Method.


2011 ◽  
Vol 243-249 ◽  
pp. 2254-2258 ◽  
Author(s):  
Wen Zhong ◽  
Zhuo Ying Tan ◽  
Lan Qiao

Aimed at stability of rock slope, the attitude of structural plane is statistically analyzed with a combined method of rose diagram and pole equidensite diagram, and the preferred structural planes which are dominant in stability of slope were further determined by a lot of factors such as the terrain and topographical features of slope, the lithologic characters and the development of structural plane. Besides, the stereographic projection method is applied to qualitative analysis for the stability of rock slope. The results show that preferred structural plane can effectively reveal the nature of rock slope stability and provide a dimensional discriminant approach for stability of rock mass slope.


2011 ◽  
Vol 94-96 ◽  
pp. 1793-1799
Author(s):  
Xu Dong Li ◽  
Chao Su

Many hydroelectric power stations are constructed on rock foundations. Therefore, the stability of rock slope is critical for the engineering especially in the excavation state. The analysis for consequent rock slopes is not identical with the earth slope because of their material characteristics. In this paper, it is combined the elastic-plastic finite element method and safe factor strength reduction method for the solution of problem. Considering the multi-layer material of the rock slope, Drucker- Prager criterion is adopted for determining the yield station which has the modified format of Morh-Coulomb criterion overcome the corner point problem of application proper for rock material. The conditions both of displacement mutability and cut-through of plastic zone are described in detail and research deep for failure judged. Analysis and compare of the situations which contain displacement, plastic zone between pre-excavation and post-excavation by certain numerical example, some useful results are given for stability analysis of consequent rock slope.


2018 ◽  
Vol 2018 ◽  
pp. 1-8 ◽  
Author(s):  
Changqing Qi ◽  
Jiabing Qi ◽  
Liuyang Li ◽  
Jin Liu

Landslide developed in rock mass usually has irregular shear plane. An approach for calculating distributed factor of safety of the irregular shear plane was put forward in this paper. The presented method can obtain not only the detailed stability status at any grid node of a complex shear plane but also the global safety of the slope. Thus, it is helpful to thoroughly understand the mechanism of slope failure. Comparing with the result obtained through the limit equilibrium method, the presented method was proved to be more accurate and suitable for stability analysis of rock slope with a thin shear plane. The stability of a potentially unstable rock slope was analyzed based on the presented method at the end of this paper. The detailed local stability, global stability, and the potential failure mechanism were provided.


2018 ◽  
Vol 149 ◽  
pp. 02026
Author(s):  
Mounir Belghali ◽  
Zied Saada

The stability of rock slope is studied using the kinematic approach of yield design theory, under the condition of plane strain and by considering the last version of the Hoek-Brown failure criterion. This criterion, which is suitable to intact rock or rock mass highly fractured regarded as isotropic and homogeneous, is widely accepted by the rock mechanics community and has been applied in numerous projects around the world. The failure mechanism used to implement the kinematic approach is a log-spiral rotational mechanism. The stability analysis is carried out under the effects of gravity forces and a surcharge applied along the upper plateau of the slope. To take account of the effects of forces developed in the rock mass during the passage of a seismic wave, the conventional pseudo-static method is adopted. This method is often used in slope stability study for its simplicity and efficiency to simulate the seismic forces. The results found are compared with published numerical solutions obtained from other approaches. The comparison showed that the results are almost equal. The maximum error found is less than 1%, indicating that this approach is effective for analyzing the stability of rock slopes. The relevance of the approach demonstrated, investigations are undertaken to study the influence of some parameters on the stability of the slope. These parameters relate to the mechanical strength of the rock, slope geometry and loading.


Sign in / Sign up

Export Citation Format

Share Document