crack network
Recently Published Documents


TOTAL DOCUMENTS

103
(FIVE YEARS 29)

H-INDEX

16
(FIVE YEARS 4)

2022 ◽  
Author(s):  
Haitao Yu ◽  
Zhibin Liu ◽  
Yun Zhang ◽  
Tingyi Luo ◽  
Yasen Tang

Abstract Fault is a common water conduit in coal mine, and the cracks of fault rock will greatly affect its permeability. In this study, three fault samples obtained in the mining area in Southwest Shandong of China was tested and observed by SEM, XRD and plane-polarized light microscope. The geometric characteristics, including crack density, fractal dimension and crack connectivity, of the crack network on the sample surface were calculated. Combined with the mineral content obtained by XRD, the nonuniformity coefficient of mineral composition in rock is defined. The results show that the crack geometric characteristics of the three samples are quite different and the above geometric parameters of crack network on three fault rock samples are correlated. The optical photomicrographs and SEM images show that the crack network is developed most in the fault rock samples with the least clay content. The study suggests that the nonuniformity coefficient of rock samples is positively correlated with the geometric characteristic of crack network. The difference in the crack network of fault rock samples is related to the coefficient of friction of clay.


2021 ◽  
Vol 2021 ◽  
pp. 1-14
Author(s):  
Pengfei Wu ◽  
Jianlong Wang ◽  
Xiaofei Luo ◽  
Rujun Mo ◽  
Yaoqing Hu ◽  
...  

Although hydraulic fracturing has been one of the primary stimulation methods for coal-bed methane (CBM) exploration, it is difficult to be applied in soft and low-permeability coal seams due to the instability of wells in such geological structures. In order to solve the problem, an idea of indirect fracturing is proposed, that is, fractures are initiated in stable and hard rocks and then propagated to coal seams in which crack networks can be formed. To verify the feasibility of such an approach, the true triaxial hydraulic fracturing experiments were conducted using two-dimensional and three-dimensional coal-rock combination samples, respectively. This study investigates the fracture patterns, pressure variation, and fracture morphology. The results show that in the process of fracture propagation from sandy mudstones to coals, the strain energy release rate in the sandy mudstones is 10.69∼25.53 times greater than that in the coal. When the fracture has a tendency to deflect toward the lower strength coal strata, under the condition of large K2/K1, the deflection criterion will be met first and the fracture will deflect and grow into the coal strata. In addition, the complex crack network can be generated when the hydrofracture intersects the coal-rock interface and the fracture pattern is analyzed.


2021 ◽  
Author(s):  
Marianne Richou ◽  
Yann Corre ◽  
Thorsten Loewenhoff ◽  
Mathilde Diez ◽  
Celine Martin ◽  
...  

Abstract The evaluation of the impact of plasma-facing components (PFCs) damage on subsequent plasma operation is an important issue for ITER. During the first phase of operation of WEST, a few ITER like divertor plasma-facing units (PFUs) have been installed on the lower divertor. One PFU was pre-damaged under electron beam gun thermal loading, before its installation in WEST, and the subsequent evolution of the damage was studied after the WEST plasma exposure. This paper presents the procedure followed to get the pre-damaged PFU. It consists in the characterization of the response of tungsten samples representative of WEST PFU under high heat flux (HHF) loading, the selection of damage (namely small cracks, crack network, crack network and W melt droplets). Finally, according to the WEST plasma loading conditions, the blocks with damage within the PFU and the position of the pre-damaged PFU on the WEST lower divertor are attributed. The first results obtained after an initial plasma exposure in WEST lead to assess, as expected with regard to the heat loading conditions, that no major surface aspect modification was found. This result emphasized the possibility to implement as pre-damage some small local droplets of melted tungsten in a high heat loaded zone for a future WEST experimental campaign.


2021 ◽  
Vol 11 (23) ◽  
pp. 11169
Author(s):  
Guangliang Yan ◽  
Qibo Yang ◽  
Fengpeng Zhang ◽  
Qiqi Hao ◽  
Xiulong Wang ◽  
...  

In situ stress is one of the most important factors affecting rock dynamic fractures during blasting excavation of deep rock mass that generally is hard rock. In this research, crater blasting experiments on hard rock under different uniaxial static stresses were conducted to investigate the initiation and propagation process of crack networks that were induced by coupled dynamic and static loads. Furthermore, the effects of anisotropic static stress fields on the initiation and propagation of crack networks during hard rock blasting, and the crack network morphological characteristics were analyzed and elucidated. The experimental results showed that the static stress field changed the process of crack network initiation and propagation during hard rock blasting, and then control the crack network morphology. Under uniaxial static stress, the crack network was elliptical with the long axis parallel to the static stress. In addition, the larger the anisotropic static stress is, the more obvious the elliptical morphology of the crack network. Moreover, the static stress lead to the delay of crack formation which indicates that the delay time during millisecond blasting excavation of deep rock mass should be adjusted appropriately according to the in situ stress. A stress-strength ratio (SSR) of 0.15 is the threshold value where static stress may have a significant effect on the initiation and propagation of a crack network. Meanwhile, the strain field prior to crack initiation during rock blasting controlled the morphological characteristics of the crack network. Finally, the mechanism of static stress affecting propagation and morphology of crack network was revealed theoretically.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Francesco Parisio ◽  
Keita Yoshioka ◽  
Kiyotoshi Sakaguchi ◽  
Ryota Goto ◽  
Takahiro Miura ◽  
...  

AbstractDeveloping high-enthalpy geothermal systems requires a sufficiently permeable formation to extract energy through fluid circulation. Injection experiments above water’s critical point have shown that fluid flow can generate a network of highly conductive tensile cracks. However, what remains unclear is the role played by fluid and solid rheology on the formation of a dense crack network. The decrease of fluid viscosity with temperature and the thermally activated visco-plasticity in rock are expected to change the deformation mechanisms and could prevent the formation of fractures. To isolate the solid rheological effects from the fluid ones and the associated poromechanics, we devise a hydro-fracture experimental program in a non-porous material, polymethyl methacrylate (PMMA). In the brittle regime, we observe rotating cracks and complex fracture patterns if a non-uniform stress distribution is introduced in the samples. We observe an increase of ductility with temperature, hampering the propagation of hydraulic fractures close to the glass transition temperature of PMMA, which acts as a limit for brittle fracture propagation. Above the glass transition temperature, acoustic emission energy drops of several orders of magnitude. Our findings provide a helpful guidance for future studies of hydro-fracturing of supercritical geothermal systems.


Lithosphere ◽  
2021 ◽  
Vol 2021 (Special 7) ◽  
Author(s):  
Chong Li ◽  
Sifeng He

Abstract To study the seepage and fracture characteristics of cemented rock strata, a series of triaxial seepage tests on cemented rock samples under different confining pressures and water pressures were carried out in this study. The triaxial strength, elastic modulus, volume strain, and the permeability of the cemented rock samples were analyzed by the seepage unit connection probability model and Kozeny-Carman model. Based on test results, the stress state of cemented rock samples was divided into four stages: nonlinear compaction stage, linear elastic stage, stress yield stage, and failure and postfailure stage. The triaxial strength of the cemented rock samples gradually increased with the increase of confining pressure but decreased with the increase of water pressure. The elastic modulus of the cemented rock sample increased with the increase of confining pressure but decreased with the increase of water pressure. Besides, the volume strain of the cemented rock sample was analyzed, and the volume strain change of the cemented rock sample was also classified into three stages: the increasing stage of crack volume strain, the stable stage of crack volume strain, and the decreasing stage of crack volume strain. Based on the results of triaxial seepage tests, the evolution of permeability was divided into the declining stage, increasing stage, and redescend stage. Through the seepage unit connection probability model and Kozeny-Carman model, the evolution of crack volume was obtained, and the evolution of crack volume with axial strain was also classified into three stages: the original pore closure stage, crack network expansion stage, and crack network closure stage. The permeability evolution and the crack volume evolution were also compared. The comparison results suggest that three stages of crack volume evolution are all ahead of three stages of permeability evolution, verifying that the crack propagation induces the formation of seepage channels in cemented rock samples. This research will provide a valuable reference for the study of instability and water inrush mechanism in cemented rock strata.


2021 ◽  
Vol 54 (5) ◽  
pp. 1379-1393
Author(s):  
Amirsalar Moslehy ◽  
Khalid A. Alshibli ◽  
Timothy J. Truster ◽  
Peter Kenesei ◽  
Wadi H. Imseeh ◽  
...  

Rock salt caverns have been extensively used as reliable repositories for hazardous waste such as nuclear waste, oil or compressed gases. Undisturbed rock salt deposits in nature are usually impermeable and have very low porosity. However, rock salt formations under excavation stresses can develop crack networks, which increase their porosities; and in the case of a connected crack network within the media, rock salt may become permeable. Although the relationship between the permeability of rock salt and the applied stresses has been reported in the literature, a microscopic study that investigates the properties influencing this relationship, such as the evolution of texture and internal stresses, has yet to be conducted. This study employs in situ 3D synchrotron micro-computed tomography and 3D X-ray diffraction (3DXRD) on two small-scale polycrystalline rock salt specimens to investigate the evolution of the texture and internal stresses within the specimens. The 3DXRD technique measures the 3D crystal structure and lattice strains within rock salt grains. The specimens were prepared under 1D compression conditions and have shown an initial {111} preferred texture, a dominant {110}〈110〉 slip system and no fully connected crack network. The {111} preferred texture under the unconfined compression experiment became stronger, while the {111}〈110〉 slip system became more prominent. The specimens did not have a fully connected crack network until applied axial stresses reached about 30 MPa, at a point where the impermeability of the material becomes compromised due to the development of multiple major cracks.


Author(s):  
N. A. Kozyrev ◽  
A. A. Usol’tsev ◽  
A. R. Mikhno ◽  
N. V. Kibko ◽  
D. E. Belov

Rollers for hot rolling mills are hardened by surfacing operation by flux-cored wire ПП-Нп-35В9Х3СФ due to GOST 26101–84. The deposited layer has a high resistivity against abrasion, but its thermal endurance is comparatively low, therefore rollers surfaced by this type of wire often failed because of formation of fire crack network and spalling. It was established that the structure nonuniformity of the deposited metal can be decreased by introducing of titanium into the flux-cored wire. The effect of introducing titanium into flux-cored wire of the Fe–C–Si–Мn–Сr–W–V system on the properties of the deposited layer has been studied. It was shown that metal structure with the addition of titanium represents martensite formed within the boundaries of the former austenite grain, a small amount of residual austenite in the form of separate areas and thin layers of δ-ferrite. The microstructure of the samples contains a carbide network. An increase in the titanium content in the deposited layer contributes to a decrease in the size of the martensite needles, as well as the size of the former austenite grain. The microstructure of the samples contains medium-acicular and fine-acicular martensite. The size of the martensite needles varies from 2 to 9 microns. It was established that introduction of titanium in the composition of the flux-cored wire in an amount of 0.02–0.13% increases the hardness of the deposited layer and reduces the abrasion of the samples.


Crystals ◽  
2021 ◽  
Vol 11 (5) ◽  
pp. 493
Author(s):  
Maiara Moreno ◽  
Idriss El Azhari ◽  
Daniel Apel ◽  
Matthias Meixner ◽  
Wei Wan ◽  
...  

Investigations on comb crack resistance of milling inserts coated with chemical vapor deposition (CVD) Ti(C,N)/α-Al2O3 and Zr(C,N)/α-Al2O3 showed a distinct wear evolution in both systems. Wear studies revealed that the appearance of comb cracks is connected to the initial CVD cooling crack network. Micropillar compression tests indicated a brittle intergranular fracture mechanism for the Ti(C,N) layer and a transgranular fracture accompanied with signs of plastic deformation for the Zr(C,N) coating. Additionally, for the Zr(C,N) based system, a compressive stress condition in the temperature range of interest (200–600 °C) was determined by in-situ synchrotron X-ray diffraction. The set of residual compressive stresses together with the ability of the Zr(C,N) layer to deform plastically are key features that explain the enhanced resistance to comb crack wear of the Zr(C,N) based system in milling of cast iron.


Sign in / Sign up

Export Citation Format

Share Document