In vitro and in vivo effects of tachykinins on immune cell function in guinea pig airways

1994 ◽  
Vol 50 (2) ◽  
pp. 119-125 ◽  
Author(s):  
Elizabeth M. Kudlacz ◽  
Robert W. Knippenberg
1998 ◽  
Vol 83 (1-2) ◽  
pp. 139-147 ◽  
Author(s):  
Trisha Pellegrino ◽  
Barbara M Bayer

Oncotarget ◽  
2015 ◽  
Vol 6 (38) ◽  
pp. 41398-41398 ◽  
Author(s):  
Han-Ching Tseng ◽  
Keiichi Kanayama ◽  
Kawaljit Kaur ◽  
So-Hyun Park ◽  
Sil Park ◽  
...  

2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Yi Kang ◽  
Marjan Nasr ◽  
Yiru Guo ◽  
Shizuka Uchida ◽  
Tyler Weirick ◽  
...  

Abstract Although cardiac mesenchymal cell (CMC) therapy mitigates post-infarct cardiac dysfunction, the underlying mechanisms remain unidentified. It is acknowledged that donor cells are neither appreciably retained nor meaningfully contribute to tissue regeneration—suggesting a paracrine-mediated mechanism of action. As the immune system is inextricably linked to wound healing/remodeling in the ischemically injured heart, the reparative actions of CMCs may be attributed to their immunoregulatory properties. The current study evaluated the consequences of CMC administration on post myocardial infarction (MI) immune responses in vivo and paracrine-mediated immune cell function in vitro. CMC administration preferentially elicited the recruitment of cell types associated with innate immunity (e.g., monocytes/macrophages and neutrophils). CMC paracrine signaling assays revealed enhancement in innate immune cell chemoattraction, survival, and phagocytosis, and diminished pro-inflammatory immune cell activation; data that identifies and catalogues fundamental immunomodulatory properties of CMCs, which have broad implications regarding the mechanism of action of CMCs in cardiac repair.


2019 ◽  
Vol 21 (Supplement_6) ◽  
pp. vi129-vi129
Author(s):  
Marilin Koch ◽  
Mykola Zdioruk ◽  
M Oskar Nowicki ◽  
Estuardo Aguilar ◽  
Laura Aguilar ◽  
...  

Abstract RATIONALE Dexamethasone is frequently used in symptomatic treatment of glioma patients, although it is known to cause immune suppression. Checkpoint inhibitor immunotherapies have not yet been successful in glioma treatments. Gene-mediated cytotoxic immunotherapy (GMCI) is an immunotherapeutic approach that uses aglatimagene besadenovec with an anti-herpetic prodrug to induce immunogenic tumor cell death and immune cell attraction to the tumor site with potent CD8 T cell activation. GMCI is currently in clinical trials for solid tumors including glioblastoma, where it showed encouraging survival results in a Phase 2 study that did not limit the use of dexamethasone. However, the effects of dexamethasone on its efficacy have not been explored. METHODS We investigated the effects of dexamethasone on GMCI in vitro using cytotoxicity and T-cell-killing assays in glioblastoma cell lines. The impact of dexamethasone in vivo was assessed in an orthotopic syngeneic murine glioblastoma model. RESULTS Cyotoxicity assays showed that Dexamethasone has a slight impact on GMCI in vitro. In contrast, we observed a highly significant effect in T-cell-functional assays in which killing was greatly impaired. Immune cell response assays revealed a reduced T-cell proliferation after co-culture with supernatant from dexamethasone or combination treated glioblastoma cells in contrast to GMCI alone. In a murine model, the combination of GMCI and dexamethasone resulted in a significant reduction in median symptom-free survival (29d) in comparison to GMCI alone (39.5d) (P = 0.0184). CONCLUSION Our data suggest that high doses of dexamethasone may negatively impact the efficacy of immunotherapy for glioma, which may be a consequence of impaired T cell function. These results support the idea that there is a need in identifying possible alternatives to dexamethasone to maximize the effectiveness of immunostimulatory therapies such as GMCI.


1999 ◽  
Vol 13 (1) ◽  
pp. 75-83 ◽  
Author(s):  
Didier Pruneau ◽  
Jean-Michel Luccarini ◽  
Chantal Fouchet ◽  
Evelyne Defrêne ◽  
Rose-Marie Franck ◽  
...  

Oncotarget ◽  
2015 ◽  
Vol 6 (24) ◽  
pp. 20002-20025 ◽  
Author(s):  
Han-Ching Tseng ◽  
Keiichi Kanayama ◽  
Kawaljit Kaur ◽  
So-Hyun Park ◽  
Sil Park ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document