Homoclinic tangencies in an autocatalytic model of interfacial processes at the bone surface

1993 ◽  
Vol 62 (1-4) ◽  
pp. 275-289 ◽  
Author(s):  
P. Tracqui
2006 ◽  
Vol 78 (5) ◽  
pp. 1657-1664 ◽  
Author(s):  
Khanh C. Hoang ◽  
Dmitry Malakhov ◽  
William E. Momsen ◽  
Howard L. Brockman

2020 ◽  
Vol 6 (3) ◽  
pp. 196-199
Author(s):  
Alina Carabello ◽  
Constanze Neupetsch ◽  
Michael Werner ◽  
Christian Rotsch ◽  
Welf-Guntram Drossel ◽  
...  

AbstractTo increase learning success in surgical training, physical simulators are supplemented by measurement technology to generate and record objective feedback and error detection. An opportunity to detect fractures following hip stem implantation early can be measurement of occurring strains on bone surface. These strains can be determined while using strain gauges, digital image correlation (DIC) or photoelasticity. In this research strain gauges and DIC were compared regarding their suitability as strain measurement tools for use in physical simulators. Therefore a testing method was described to replicate the implantation of a hip stem. Testing devices modelled on a realistic prosthesis were pressed into prepared porcine femora in a two-step procedure with a material testing machine. The local strains occurring on bone surface were determined using an optical measurement system for DIC and strain gauges. The initial fractures in the tested femora are located medial-anterior in most cases (73,6%). With increasing indentation depth of the test device, the strains on bone surface increase. Comparing the local strains determined by DIC and strain gauges consistencies in curves are noticeable. Maximal determined strains before fracturing amount to 0,69% with strain gauges and 0,75% with DIC. In the range of the fracture gap, strain gradients are determined by using DIC. However the detected surfaces are of low quality caused by gaps and motion artefacts. The results show strains on bone surfaces for early fracture detection are measurable with strain gauges and DIC. DIC is assessed as less suitable compared to strain gauges. Furthermore strain gauges have greater level of integration and economic efficiency, so they are preferred the use in surgical training simulators.


Author(s):  
Mohammed Mousa Bakri ◽  
Sung Ho Lee ◽  
Jong Ho Lee

Abstract Background A compact passive oxide layer can grow on tantalum (Ta). It has been reported that this oxide layer can facilitate bone ingrowth in vivo though the development of bone-like apatite, which promotes hard and soft tissue adhesion. Thus, Ta surface treatment on facial implant materials may improve the tissue response, which could result in less fibrotic encapsulation and make the implant more stable on the bone surface. The purposes of this study were to verify whether surface treatment of facial implant materials using Ta can improve the biohistobiological response and to determine the possibility of potential clinical applications. Methods Two different and commonly used implant materials, silicone and expanded polytetrafluoroethylene (ePTFE), were treated via Ta ion implantation using a Ta sputtering gun. Ta-treated samples were compared with untreated samples using in vitro and in vivo evaluations. Osteoblast (MG-63) and fibroblast (NIH3T3) cell viability with the Ta-treated implant material was assessed, and the tissue response was observed by placing the implants over the rat calvarium (n = 48) for two different lengths of time. Foreign body and inflammatory reactions were observed, and soft tissue thickness between the calvarium and the implant as well as the bone response was measured. Results The treatment of facial implant materials using Ta showed a tendency toward increased fibroblast and osteoblast viability, although this result was not statistically significant. During the in vivo study, both Ta-treated and untreated implants showed similar foreign body reactions. However, the Ta-treated implant materials (silicone and ePTFE) showed a tendency toward better histological features: lower soft tissue thickness between the implant and the underlying calvarium as well as an increase in new bone activity. Conclusion Ta surface treatment using ion implantation on silicone and ePTFE facial implant materials showed the possibility of reducing soft tissue intervention between the calvarium and the implant to make the implant more stable on the bone surface. Although no statistically significant improvement was observed, Ta treatment revealed a tendency toward an improved biohistological response of silicone and ePTFE facial implants. Conclusively, tantalum treatment is beneficial and has the potential for clinical applications.


2021 ◽  
Vol 30 ◽  
pp. 096368972097539
Author(s):  
Akiko Toyota ◽  
Rei Shinagawa ◽  
Mikiko Mano ◽  
Kazuyuki Tokioka ◽  
Naoto Suda

Cleft lip and palate is a congenital disorder including cleft lip, and/or cleft palate, and/or alveolar cleft, with high incidence.The alveolar cleft causes morphological and functional abnormalities. To obtain bone bridge formation and continuous structure between alveolar clefts, surgical interventions are performed from infancy to childhood. However, desirable bone bridge formation is not obtained in many cases. Regenerative medicine using mesenchymal stem cells (MSCs) is expected to be a useful strategy to obtain sufficient bone bridge formation between alveolar clefts. In this study, we examined the effect of human umbilical cord-derived MSCs by transplantation into a rat experimental alveolar cleft model. Human umbilical cords were digested enzymatically and the isolated cells were collected (UC-EZ cells). Next, CD146-positive cells were enriched from UC-EZ cells by magnetic-activated cell sorting (UC-MACS cells). UC-EZ and UC-MACS cells showed MSC gene/protein expression, in vitro. Both cells had multipotency and could differentiate to osteogenic, chondrogenic, and adipogenic lineages under the differentiation-inducing media. However, UC-EZ cells lacked Sox2 expression and showed the lower ratio of MSCs than UC-MACS cells. Thus, UC-MACS cells were transplanted with hydroxyapatite and collagen (HA + Col) into alveolar cleft model to evaluate bone formation in vivo. The results of micro computed tomography and histological staining showed that UC-MACS cells with HA + Col induced more abundant bone formation between the experimental alveolar clefts than HA + Col implantation only. Cells immunopositive for osteopontin were accumulated along the bone surface and some of them were embedded in the bone. Cells immunopositive for human-specific mitochondria were aligned along the newly formed bone surface and in the new bone, suggesting that UC-MACS cells contributed to the bone bridge formation between alveolar clefts. These findings indicate that human umbilical cords are reliable bioresource and UC-MACS cells are useful for the alveolar cleft regeneration.


Endocrinology ◽  
2016 ◽  
Vol 157 (1) ◽  
pp. 127-140 ◽  
Author(s):  
Shaohong Cheng ◽  
Weirong Xing ◽  
Sheila Pourteymoor ◽  
Jan Schulte ◽  
Subburaman Mohan

Abstract The hypoxic growth plate cartilage requires hypoxia-inducible factor (HIF)-mediated pathways to maintain chondrocyte survival and differentiation. HIF proteins are tightly regulated by prolyl hydroxylase domain-containing protein 2 (Phd2)-mediated proteosomal degradation. We conditionally disrupted the Phd2 gene in chondrocytes by crossing Phd2 floxed mice with type 2 collagen-α1-Cre transgenic mice and found massive increases (>50%) in the trabecular bone mass of long bones and lumbar vertebra of the Phd2 conditional knockout (cKO) mice caused by significant increases in trabecular number and thickness and reductions in trabecular separation. Cortical thickness and tissue mineral density at the femoral middiaphysis of the cKO mice were also significantly increased. Dynamic histomorphometric analyses revealed increased longitudinal length and osteoid surface per bone surface in the primary spongiosa of the cKO mice, suggesting elevated conversion rate from hypertrophic chondrocytes to mineralized bone matrix as well as increased bone formation in the primary spongiosa. In the secondary spongiosa, bone formation measured by mineralizing surface per bone surface and mineral apposition rate were not changed, but resorption was slightly reduced. Increases in the mRNA levels of SRY (sex determining region Y)-box 9, osterix (Osx), type 2 collagen, aggrecan, alkaline phosphatase, bone sialoprotein, vascular endothelial growth factor, erythropoietin, and glycolytic enzymes in the growth plate of cKO mice were detected by quantitative RT-PCR. Immunohistochemistry revealed an increased HIF-1α protein level in the hypertrophic chondrocytes of cKO mice. Infection of chondrocytes isolated from Phd2 floxed mice with adenoviral Cre resulted in similar gene expression patterns as observed in the cKO growth plate chondrocytes. Our findings indicate that Phd2 suppresses endochondral bone formation, in part, via HIF-dependent mechanisms in mice.


Sign in / Sign up

Export Citation Format

Share Document