Structural organization of a nuclear gene for the α-subunit of the bovine mitochondrial ATP synthase complex

Author(s):  
Dennis J. Pierce ◽  
Elzora M. Jordan ◽  
Gail A.M. Breen
2001 ◽  
Vol 6 (2) ◽  
pp. 91-98 ◽  
Author(s):  
HA-SHENG LI ◽  
JI-YING ZHANG ◽  
BRYAN S. THOMPSON ◽  
XIAO-YING DENG ◽  
MICHAEL E. FORD ◽  
...  

Individuals with chronic excessive alcohol ingestion are put at the risk of acute and chronic pancreatitis. Underlying molecular mechanisms are unknown. Differential gene expression in the pancreas was profiled using mRNA differential display by comparison between control and ethanol-consuming rats. Male Wistar rats were fed with diets containing 6.7% (vol/vol) ethanol for 4 wk. A cDNA tag that was overexpressed in the pancreas of rats fed ethanol was isolated. A 723-bp cDNA was cloned from a rat pancreatic cDNA library, which encodes a novel rat mitochondrial ATP synthase subunit 9, isoform 3 (ATP5G3), which is homologous to a human ATP5G3 gene. Real-time PCR demonstrated that all three nuclear gene isoforms (ATP5G1, ATP5G2, and ATP5G3) were consistently upregulated in the pancreas of alcohol-consuming rats, parallel with mitochondrial injury. The cellular response to mitochondrial damage and metabolic stress may reflect an adaptive process for mitochondrial repair in pancreatic acinar cells during chronic ethanol ingestion.


2002 ◽  
Vol 13 (11) ◽  
pp. 3836-3844 ◽  
Author(s):  
Joseline Ojaimi ◽  
Junmin Pan ◽  
Sumana Santra ◽  
William J. Snell ◽  
Eric A. Schon

Unlike most organisms, the mitochondrial DNA (mtDNA) ofChlamydomonas reinhardtii, a green alga, does not encode subunit 6 of F0F1-ATP synthase. We hypothesized that C. reinhardtii ATPase 6 is nucleus encoded and identified cDNAs and a single-copy nuclear gene specifying this subunit (CrATP6, with eight exons, four of which encode a mitochondrial targeting signal). Although the algal and humanATP6 genes are in different subcellular compartments and the encoded polypeptides are highly diverged, their secondary structures are remarkably similar. When CrATP6 was expressed in human cells, a significant amount of the precursor polypeptide was targeted to mitochondria, the mitochondrial targeting signal was cleaved within the organelle, and the mature polypeptide was assembled into human ATP synthase. In spite of the evolutionary distance between algae and mammals, C. reinhardtii ATPase 6 functioned in human cells, because deficiencies in both cell viability and ATP synthesis in transmitochondrial cell lines harboring a pathogenic mutation in the human mtDNA-encoded ATP6 gene were overcome by expression of CrATP6. The ability to express a nucleus-encoded version of a mammalian mtDNA-encoded protein may provide a way to import other highly hydrophobic proteins into mitochondria and could serve as the basis for a gene therapy approach to treat human mitochondrial diseases.


Genetics ◽  
1995 ◽  
Vol 140 (2) ◽  
pp. 435-442 ◽  
Author(s):  
E R Weber ◽  
R S Rooks ◽  
K S Shafer ◽  
J W Chase ◽  
P E Thorsness

Abstract In Saccharomyces cerevisiae, inactivation of the nuclear gene YME1 causes several phenotypes associated with impairment of mitochondrial function. In addition to deficiencies in mitochondrial compartment integrity and respiratory growth, yme1 mutants grow extremely slowly in the absence of mitochondrial DNA. We have identified two genetic loci that, when mutated, act as dominant suppressors of the slow-growth phenotype of yme1 strains lacking mitochondrial DNA. These mutations only suppressed the slow-growth phenotype of yme1 strains lacking mitochondrial DNA and had no effect on other phenotypes associated with yme1 mutations. One allele of one linkage group had a collateral respiratory deficient phenotype that allowed the isolation of the wild-type gene. This suppressing mutation was in ATP3, a gene that encodes the gamma subunit of the mitochondrial ATP synthase. Recovery of two of the suppressing ATP3 alleles and subsequent sequence analysis placed the suppressing mutations at strictly conserved residues near the C terminus of Atp3p. Deletion of the ATP3 genomic locus resulted in an inability to utilize nonfermentable carbon sources. atp3 deletion strains lacking mitochondrial DNA grew slowly on glucose media but were not as compromised for growth as yme1 yeast lacking mitochondrial DNA.


Genetics ◽  
1999 ◽  
Vol 151 (4) ◽  
pp. 1353-1363
Author(s):  
Timothy P Ellis ◽  
H Bruce Lukins ◽  
Phillip Nagley ◽  
Brian E Corner

Abstract Mutations in the nuclear AEP2 gene of Saccharomyces generate greatly reduced levels of the mature form of mitochondrial oli1 mRNA, encoding subunit 9 of mitochondrial ATP synthase. A series of mutants was isolated in which the temperature-sensitive phenotype resulting from the aep2-ts1 mutation was suppressed. Three strains were classified as containing a mitochondrial suppressor: these lost the ability to suppress aep2-ts1 when their mitochondrial genome was replaced with wild-type mitochondrial DNA (mtDNA). Many other isolates were classified as containing dominant nuclear suppressors. The three mitochondrion-encoded suppressors were localized to the oli1 region of mtDNA using rho– genetic mapping techniques coupled with PCR analysis; DNA sequencing revealed, in each case, a T-to-C nucleotide transition in mtDNA 16 nucleotides upstream of the oli1 reading frame. It is inferred that the suppressing mutation in the 5′ untranslated region of oli1 mRNA restores subunit 9 biosynthesis by accommodating the modified structure of Aep2p generated by the aep2-ts1 mutation (shown here to cause the substitution of proline for leucine at residue 413 of Aep2p). This mode of mitochondrial suppression is contrasted with that mediated by heteroplasmic rearranged rho– mtDNA genomes bypassing the participation of a nuclear gene product in expression of a particular mitochondrial gene. In the present study, direct RNA-protein interactions are likely to form the basis of suppression.


1995 ◽  
Vol 14 (1) ◽  
pp. 63-67 ◽  
Author(s):  
Wenjun Bie ◽  
Jeremy A. Squire ◽  
Murray Fraser ◽  
Malcolm C. Paterson ◽  
Roseline Godbout

Sign in / Sign up

Export Citation Format

Share Document