Calpain-induced down-regulation of protein kinase C inhibits dense-granule secretion in human platelets. Inhibition of platelet aggregation or calpain activity preserves protein kinase C and restores full secretion

1994 ◽  
Vol 1224 (3) ◽  
pp. 480-488 ◽  
Author(s):  
Yatin Patel ◽  
Vijay V. Kakkar ◽  
Kalwant S. Authi
Blood ◽  
2011 ◽  
Vol 118 (2) ◽  
pp. 416-424 ◽  
Author(s):  
Olga Konopatskaya ◽  
Sharon A. Matthews ◽  
Matthew T. Harper ◽  
Karen Gilio ◽  
Judith M. E. M. Cosemans ◽  
...  

Abstract Platelets are highly specialized blood cells critically involved in hemostasis and thrombosis. Members of the protein kinase C (PKC) family have established roles in regulating platelet function and thrombosis, but the molecular mechanisms are not clearly understood. In particular, the conventional PKC isoform, PKCα, is a major regulator of platelet granule secretion, but the molecular pathway from PKCα to secretion is not defined. Protein kinase D (PKD) is a family of 3 kinases activated by PKC, which may represent a step in the PKC signaling pathway to secretion. In the present study, we show that PKD2 is the sole PKD member regulated downstream of PKC in platelets, and that the conventional, but not novel, PKC isoforms provide the upstream signal. Platelets from a gene knock-in mouse in which 2 key phosphorylation sites in PKD2 have been mutated (Ser707Ala/Ser711Ala) show a significant reduction in agonist-induced dense granule secretion, but not in α-granule secretion. This deficiency in dense granule release was responsible for a reduced platelet aggregation and a marked reduction in thrombus formation. Our results show that in the molecular pathway to secretion, PKD2 is a key component of the PKC-mediated pathway to platelet activation and thrombus formation through its selective regulation of dense granule secretion.


Blood ◽  
2009 ◽  
Vol 114 (22) ◽  
pp. 3004-3004
Author(s):  
Ramya Chari ◽  
Dheeraj Bhavanasi ◽  
James Daniel ◽  
Satya P. Kunapuli

Abstract Abstract 3004 Poster Board II-981 Protein Kinase C-delta (PKCδ) is a novel PKC isoform that differentially regulates platelet dense granule secretion. PKCδ positively regulates Protease activated receptor (PAR)-mediated dense granule secretion, whereas it negatively regulates glycoproteinVI (GPVI)-mediated dense granule secretion in platelets. PKCδ, a serine/threonine kinase is phosphorylated on its tyrosine residues. There are nine potential tyrosine phosphorylation sites in the regulatory domain of PKCδ. Phosphorylation at different tyrosine residues regulates its substrate specificity. We have previously shown that the association of PKCδ with Lyn and SHIP-1 negatively regulates GPVI-mediated dense granule secretion. However, the event leading to the association between PKCδ and SHIP-1 is not known. We hypothesize that the differential tyrosine phosphorylation of PKCδ downstream of PARs or GPVI receptors result in the preferential association with SHIP-1. In the current study, we show that PKCδ is phosphorylated at tyrosine residues Y332, Y523, Y525 and Y565 upon PAR or GPVI stimulation. Y311 residue is predominantly phosphorylated upon stimulation of PARs, whereas Y155 residue is preferentially phosphorylated upon GPVI stimulation. PAR-mediated Y311 phosphorylation peaks at later timepoint, whereas GPVI-mediated Y155 phosphorylation peaks at an early timepoint. correlating with dense granule secretion. Furthermore, we show that agarose-conjugated Y155 phosphorylated PKCδ peptide associates with SHIP-1 upon GPVI stimulation, and not PARs. These data suggest that the phosphorylation of PKCδ at distinct tyrosine residues differentially regulate its association with SHIP-1. Therefore, we conclude that the GPVI-mediated phosphorylation of PKCδ at 155 is required for its association with SHIP-1. This study is supported by pre-doctoral fellowship to Ramya Chari from American Heart Association, Pennsylvania-Delaware affiliate. Disclosures: No relevant conflicts of interest to declare.


2011 ◽  
Vol 286 (24) ◽  
pp. 21073-21082 ◽  
Author(s):  
Amanda J. Unsworth ◽  
Holly Smith ◽  
Paul Gissen ◽  
Steve P. Watson ◽  
Catherine J. Pears

Blood ◽  
2007 ◽  
Vol 110 (11) ◽  
pp. 3630-3630
Author(s):  
Ramya Chari ◽  
Soochong Kim ◽  
Swaminathan Murugappan ◽  
James L. Daniel ◽  
Satya P. Kunapuli

Abstract Collagen-induced glycoprotein (GP) VI-mediated and thrombin-induced protease activated receptors (PAR)-mediated activation are important signaling pathways regulating dense granule secretion in platelets. Protein kinase C (PKC) isoforms play a crucial role in platelet secretion and we have previously shown that PKCδ plays a ying-yang role in dense granule release by different agonists (Murugappan et al, J. Biol. Chem. 2004). PKCδ isoform positively regulates PAR-mediated platelet dense granule release, whereas it negatively regulates GPVI-mediated dense granule release. In this study, we investigated the mechanism of such differential regulation by PKCδ downstream of PAR and GPVI pathways. We hypothesize that the differential association of PKCδ with phosphatases downstream of GPVI and PAR receptors differentially regulate dense granule secretion. More specifically, we explored the functional relevance of the interaction of PKCδ with Src homology 2-domain containing Inositol Phosphatases (SHIP), 5′-inositol phosphatases in platelets. In our studies, SHIP-1 was tyrosine phosphorylated by both PARs and GPVI receptors and its phosphorylation followed different activation kinetics. Whereas PAR-mediated SHIP-1 phosphorylation (Y1020) was delayed and occurred as late as 120 seconds, the GPVI-mediated SHIP-1 phosphorylation was rapid, starting as early as 15 seconds and peaked at 60 seconds. Co-immunoprecipitation experiments revealed that SHIP-1, and not SHIP-2, associated with PKCδ upon stimulation of platelets with GPVI agonist, convulxin. However, such association did not occur with the PAR agonists. GPVI-mediated SHIP-1 phosphorylation failed to occur in platelets from mice lacking Lyn kinase suggesting a role for Lyn in regulating SHIP-1 phosphorylation. In murine platelets lacking either Lyn or SHIP-1, dense granule secretion was potentiated by convulxin and not by thrombin. We attribute the phosphorylation and association of SHIP-1 with PKCδ to be critical for the regulation of agonist-induced dense granule secretion in platelets. Based on the above results, we conclude that the preferential association of SHIP-1 with PKCδ upon stimulation of GPVI receptor results in the negative regulation of collagen-induced dense granule release in platelets.


1987 ◽  
Author(s):  
S Krishnamurthi ◽  
V V Kakkar

We have compared the abilities of exogenously added U46619, the PG endoperoxide analogue and, sn-l-oleoyl 2-acetylglycerol (OAG) and sn-1,2-dioctanoylglycerol (diCg), the membrane-permeant DAG analogues, at restoring weak agonist-induced secretion in indomethacin (10μM)-treated platelets (I-PL) in the absence of endogenous PG/Tx synthesis. [14C]-5HT secretion from pre-loaded, washed human platelets was correlated with the levels of [Ca2+]i, using platelets loaded with quin 2. Concentrations of OAG (62-125μM) and diCg (15-30μM), which have previously been shown to be fully effective at activating protein kinase C, failed to significantly enhance [14C]-5HT secretion in combination with ADP (10μM), adrenaline (10μM) or PAF (0.2μM) although they potentiated platelet aggregation, when added 10-30 sec after these agonists to I-PL. eg ADP-0%, 30jiM diCg-9.8%, ADP+diCg-11.9%, 5HT release (p>O.05). In contrast, a low concentration of U46619 (0.2μM), that induced no aggregation, [14C]-5HT secretion or rise in [Ca2+]i levels on its own, was able to synergize strongly at potentiating secretion in combination with all three weak agonists examined, as well as in combination with OAG and diCg (U46619-0%, ADP+U46619-20.4%, U46619+30μM diC8-48% 5HT release) . The greater effectiveness of U46619 at potentiating secretion in combination with the weak agonists was not related to different degrees of [Ca2+]i mobilisation, as ADP and PAF-induced rise in [Ca2+]i occurred to a similar degree in the presence of U46619 and diCg. At a higher concentration of U46619 (0.6μM), which was maximally effective at inducing secretion and elevating [Ca2+]i levels on its own, addition of the weak agonists or OAG or diCg, along with U46619, resulted in a further enhancement of secretion which was independent of changes in [Ca2+]i levels. The results demonstrate that U46619 but not OAG or diCg, is able to fully restore weak agonist-induced secretion in indomethacin-treated platelets, suggesting that the actions of endogenously formed PG endoperoxides/TxA2 cannot be substituted by DAG and raised [Ca2+]i levels and, may be mediated via a mechanism additional to that involving these mediators.


2000 ◽  
Vol 347 (2) ◽  
pp. 561-569 ◽  
Author(s):  
Tsukasa OHMORI ◽  
Yutaka YATOMI ◽  
Naoki ASAZUMA ◽  
Kaneo SATOH ◽  
Yukio OZAKI

Proline-rich tyrosine kinase 2 (Pyk2) (also known as RAFTK, CAKβ or CADTK) has been identified as a member of the focal adhesion kinase (FAK) family of protein-tyrosine kinases and it has been suggested that the mode of Pyk2 activation is distinct from that of FAK. In the present study we investigated the mode of Pyk2 activation in human platelets. When platelets were stimulated with thrombin, Pyk2, as well as FAK, was markedly tyrosine-phosphorylated, in a manner mostly dependent on αIIbβ3 integrin-mediated aggregation. The residual Pyk2 tyrosine phosphorylation observed in the absence of platelet aggregation was completely abolished by pretreatment with BAPTA/AM [bis-(o-aminophenoxy)ethane-N,N,Nʹ,Nʹ-tetra-acetic acid acetoxymethyl ester]. The Pyk2 phosphorylation was inhibited by protein kinase C (PKC) inhibitors at concentrations that inhibited platelet aggregation. In contrast, direct activation of PKC with the active phorbol ester PMA induced the tyrosine phosphorylation of Pyk2 and FAK but only when platelets were fully aggregated with the exogenous addition of fibrinogen (the ligand for αIIbβ3 integrin). Furthermore, PMA-induced Pyk2 (and FAK) tyrosine phosphorylation was also observed when platelets adhered to immobilized fibrinogen. The activation of the von Willebrand factor (vWF)--glycoprotein Ib pathway with botrocetin together with vWF failed to induce Pyk2 (and FAK) tyrosine phosphorylation. Most Pyk2 and FAK was present in the cytosol and membrane skeleton fractions in unstimulated platelets. When platelets were stimulated with thrombin, both Pyk2 and FAK were translocated to the cytoskeleton in an aggregation-dependent manner. In immunoprecipitation studies, Pyk2, as well as FAK, seemed to associate with Shc through Grb2. With the use of glutathione S-transferase fusion proteins containing Shc-SH2, Grb2-SH2, and Grb2 N-terminal and C-terminal SH3 domains, it was implied that the proline-rich region of Pyk2 (and FAK) binds to the N-terminal SH3 domain of Grb2 and that the phosphotyrosine residue of Shc binds to the SH2 domain of Grb2. Although Pyk2 and FAK have been reported to be differentially regulated in many cell types, our results suggest that, in human platelets, the mode of Pyk2 activation is mostly similar to that of FAK, in terms of αIIbβ3 integrin-dependent and PKC-dependent tyrosine phosphorylation. Furthermore, Pyk2, as well as FAK, might have one or more important roles in post-aggregation tyrosine phosphorylation events, in association with the cytoskeleton and through interaction with adapter proteins including Grb2 and Shc.


Blood ◽  
1993 ◽  
Vol 82 (9) ◽  
pp. 2704-2713 ◽  
Author(s):  
R Vezza ◽  
R Roberti ◽  
GG Nenci ◽  
P Gresele

Abstract Prostaglandin E2 (PGE2) is produced by activated platelets and by several other cells, including capillary endothelial cells. PGE2 exerts a dual effect on platelet aggregation: inhibitory, at high, supraphysiologic concentrations, and potentiating, at low concentrations. No information exists on the biochemical mechanisms through which PGE2 exerts its proaggregatory effect on human platelets. We have evaluated the activity of PGE2 on human platelets and have analyzed the second messenger pathways involved. PGE2 (5 to 500 nmol/L) significantly enhanced aggregation induced by subthreshold concentrations of U46619, thrombin, adenosine diphosphate (ADP), and phorbol 12-myristate 13-acetate (PMA) without simultaneously increasing calcium transients. At a high concentration (50 mumol/L), PGE2 inhibited both aggregation and calcium movements. PGE2 (5 to 500 nmol/L) significantly enhanced secretion of beta-thromboglobulin (beta TG) and adenosine triphosphate from U46619- and ADP-stimulated platelets, but it did not affect platelet shape change. PGE2 also increased the binding of radiolabeled fibrinogen to the platelet surface and increased the phosphorylation of the 47-kD protein in 32P- labeled platelets stimulated with subthreshold doses of U46619. Finally, the amplification of U46619-induced aggregation by PGE2 (500 nmol/L) was abolished by four different protein kinase C (PKC) inhibitors (calphostin C, staurosporine, H7, and TMB8). Our results suggest that PGE2 exerts its facilitating activity on agonist-induced platelet activation by priming PKC to activation by other agonists. PGE2 potentiates platelet activation at concentrations produced by activated platelets and may thus be of pathophysiologic relevance.


2002 ◽  
Vol 96 (3) ◽  
pp. 651-658 ◽  
Author(s):  
Joen R. Sheu ◽  
George Hsiao ◽  
Hsiung N. Luk ◽  
Yi W. Chen ◽  
Ta L. Chen ◽  
...  

Background Midazolam is widely used as a sedative and anesthetic induction agent. The aim of this study was to systematically examine the inhibitory mechanisms of midazolam in platelet aggregation. Methods The inhibitory mechanisms of midazolam in platelet aggregation were explored by means of analysis of the platelet glycoprotein IIb-IIIa complex, phosphoinositide breakdown, intracellular Ca+2 mobilization, measurement of membrane fluidity, thromboxane B2 formation, and protein kinase C activity. Results In this study, midazolam dose-dependently (6-26 microm) inhibited platelet aggregation in human platelets stimulated by agonists. Midazolam also dose-dependently inhibited phosphoinositide breakdown and intracellular Ca+2 mobilization in human platelets stimulated by collagen. Midazolam (6-26 mum) significantly inhibited thromboxane A2 formation stimulated by collagen in human platelets. Moreover, midazolam (15 and 26 mum) dose-dependently decreased the fluorescence of platelet membranes tagged with diphenylhexatriene. Rapid phosphorylation of a platelet protein of Mr 47,000 (P47), a marker of protein kinase C activation, was triggered by collagen (2 microg/ml). This phosphorylation was markedly inhibited by midazolam (26 microm). Conclusions These results indicate that the antiplatelet activity of midazolam may be involved in the following pathways: the effects of midazolam may initially be caused by induction of conformational changes in platelet membrane, leading to a change in the activity of phospholipase C, and subsequent inhibition of phosphoinositide breakdown and thromboxane A2 formation, thereby leading to inhibition of both intracellular Ca+2 mobilization and phosphorylation of P47 protein.


Sign in / Sign up

Export Citation Format

Share Document