The temperature dependent current gain of heterojunction bipolar transistors

1991 ◽  
Vol 15 (1-4) ◽  
pp. 317-320
Author(s):  
Bo Willén ◽  
Urban Westergren
2004 ◽  
Vol 14 (03) ◽  
pp. 819-824 ◽  
Author(s):  
HUILI G. XING ◽  
UMESH K. MISHRA

DC I-V characteristics of AlGaN/GaN heterojunction bipolar transistors (HBTs) and GaN homojunction bipolar transistors (BJTs) are analyzed in the temperature range of 200-450 K. At low current levels, the adverse effects of poor ohmic contacts coupled with paths of high leakage make it difficult to extract intrinsic device operation ["Explanation of anomalous current gain observed in GaN based bipolar transistors", Xing et al. IEEE Elect. Dev. Lett. 24(1) 2003:p.4-6]. At intermediate current levels, owing to enhanced ionization of Mg in the base, the HBTs show an increase in current gain resulting from mitigated current crowding, and the BJTs show a decrease in current gain resulting from reduction of emitter injection coefficient. The offset voltage dependence on temperature is also explained.


Author(s):  
Phuc Hong Than ◽  
Tran Thi Tra Vinh ◽  
Le Thi My Hanh ◽  
Than Quang Tho ◽  
Nguyen Vu Anh Quang ◽  
...  

Although the effects of electrical stress and temperature on the performance of the InGaP/GaAs heterojunction bipolar transistors (HBTs) have been widely studied and reported, little or none was reported for the InGaP/GaAs heterojunction phototransistors (HPTs) in the literature. In this paper, we discuss the temperature-dependent characteristic of InGaP/GaAs HPTs before and after electrical stress and assess the effectiveness of the emitter-ledge passivation, which was found to effectively keep the InGaP/GaAs HBTs from degrading at higher temperature or after an electrical stress. The emitter-ledge passivation is also effective keeping a higher optical gain even at higher temperature. An electrical stress was given to the HPTs by keeping the collector current at 60 mA for 15 min. Since the collector current density as an electrical stress is 24 A/cm2 and much smaller than the stress usually given to smaller HBTs for the stress test, the decreased optical gain was not observed when it was given at room temperature. However, when it was given at 420 K, significant decreases of the current gain and optical gain were observed at any temperature. Nevertheless, the emitter-ledge passivation was found effective in minimizing the decreases of the current gain and optical gain.


1994 ◽  
Vol 65 (11) ◽  
pp. 1403-1405 ◽  
Author(s):  
S. R. D. Kalingamudali ◽  
A. C. Wismayer ◽  
R. C. Woods ◽  
J. S. Roberts

2004 ◽  
Vol 833 ◽  
Author(s):  
Byoung-Gue Min ◽  
Jong-Min Lee ◽  
Seong-Il Kim ◽  
Chul-Won Ju ◽  
Kyung-Ho Lee

ABSTRACTA significant degradation of current gain of InP/InGaAs/InP double heterojunction bipolar transistors was observed after passivation. The amount of degradation depended on the degree of surface exposure of the p-type InGaAs base layer according to the epi-structure and device structure. The deposition conditions such as deposition temperature, kinds of materials (silicon oxide, silicon nitride and aluminum oxide) and film thickness were not major variables to affect the device performance. The gain reduction was prevented by the BOE treatment before the passivation. A possible explanation of this behavior is that unstable non-stoichiometric surface states produced by excess In, Ga, or As after mesa etching are eliminated by BOE treatment and reduce the surface recombination sites.


2005 ◽  
Vol 87 (2) ◽  
pp. 023503 ◽  
Author(s):  
Yasuhiro Oda ◽  
Haruki Yokoyama ◽  
Kenji Kurishima ◽  
Takashi Kobayashi ◽  
Noriyuki Watanabe ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document