scholarly journals Effects of Temperature and Stress on the InGaP/GaAs Heterojunction Phototransistor

Author(s):  
Phuc Hong Than ◽  
Tran Thi Tra Vinh ◽  
Le Thi My Hanh ◽  
Than Quang Tho ◽  
Nguyen Vu Anh Quang ◽  
...  

Although the effects of electrical stress and temperature on the performance of the InGaP/GaAs heterojunction bipolar transistors (HBTs) have been widely studied and reported, little or none was reported for the InGaP/GaAs heterojunction phototransistors (HPTs) in the literature. In this paper, we discuss the temperature-dependent characteristic of InGaP/GaAs HPTs before and after electrical stress and assess the effectiveness of the emitter-ledge passivation, which was found to effectively keep the InGaP/GaAs HBTs from degrading at higher temperature or after an electrical stress. The emitter-ledge passivation is also effective keeping a higher optical gain even at higher temperature. An electrical stress was given to the HPTs by keeping the collector current at 60 mA for 15 min. Since the collector current density as an electrical stress is 24 A/cm2 and much smaller than the stress usually given to smaller HBTs for the stress test, the decreased optical gain was not observed when it was given at room temperature. However, when it was given at 420 K, significant decreases of the current gain and optical gain were observed at any temperature. Nevertheless, the emitter-ledge passivation was found effective in minimizing the decreases of the current gain and optical gain.

2009 ◽  
Vol 1195 ◽  
Author(s):  
Atsushi Koizumi ◽  
Kazuki Oshitanai ◽  
Jaesung Lee ◽  
Kazuo Uchida ◽  
Shinji Nozaki

AbstractThe reliability of InP/InGaAs heterojunction bipolar transistors (HBTs) with highly carbon-doped and zinc-doped InGaAs base layers grown by metal-organic vapor phase epitaxy has been investigated. The Raman spectroscopy reveals that the post-growth annealing for the carbon-doped InGaAs base improves the crystallinity to become as good as that of the zinc-doped InGaAs base. However, the photoluminescence intensity remains lower than that of the zinc-doped InGaAs even after the post-growth annealing. The current gains of the carbon- and zinc-doped base InP/InGaAs HBTs are 63 and 75, respectively, and they are affected by the base crystallinity. After the 15-min current stress test, the current gains decreased by 40 and 3% from the initial current gains for zinc- and carbon-doped base HBTs, respectively, are observed. These results indicate that the carbon-doped base HBT is much more reliable than that of zinc-doped base HBT, though it has a lower current gain.


2004 ◽  
Vol 14 (03) ◽  
pp. 819-824 ◽  
Author(s):  
HUILI G. XING ◽  
UMESH K. MISHRA

DC I-V characteristics of AlGaN/GaN heterojunction bipolar transistors (HBTs) and GaN homojunction bipolar transistors (BJTs) are analyzed in the temperature range of 200-450 K. At low current levels, the adverse effects of poor ohmic contacts coupled with paths of high leakage make it difficult to extract intrinsic device operation ["Explanation of anomalous current gain observed in GaN based bipolar transistors", Xing et al. IEEE Elect. Dev. Lett. 24(1) 2003:p.4-6]. At intermediate current levels, owing to enhanced ionization of Mg in the base, the HBTs show an increase in current gain resulting from mitigated current crowding, and the BJTs show a decrease in current gain resulting from reduction of emitter injection coefficient. The offset voltage dependence on temperature is also explained.


2005 ◽  
Vol 483-485 ◽  
pp. 889-892 ◽  
Author(s):  
Martin Domeij ◽  
Erik Danielsson ◽  
Hyung Seok Lee ◽  
Carl Mikael Zetterling ◽  
Mikael Östling

The current gain (b) of 4H-SiC BJTs as function of collector current (IC) has been investigated by DC and pulsed measurements and by device simulations. A measured monotonic increase of b with IC agrees well with simulations using a constant distribution of interface states at the 4H-SiC/SiO2 interface along the etched side-wall of the base-emitter junction. Simulations using only bulk recombination, on the other hand, are in poor agreement with the measurements. The interface states degrade the simulated current gain by combined effects of localized recombination and trapped charge that influence the surface potential. Additionally, bandgap narrowing has a significant impact by reducing the peak current gain by about 50 % in simulations.


1994 ◽  
Vol 65 (11) ◽  
pp. 1403-1405 ◽  
Author(s):  
S. R. D. Kalingamudali ◽  
A. C. Wismayer ◽  
R. C. Woods ◽  
J. S. Roberts

2004 ◽  
Vol 833 ◽  
Author(s):  
Byoung-Gue Min ◽  
Jong-Min Lee ◽  
Seong-Il Kim ◽  
Chul-Won Ju ◽  
Kyung-Ho Lee

ABSTRACTA significant degradation of current gain of InP/InGaAs/InP double heterojunction bipolar transistors was observed after passivation. The amount of degradation depended on the degree of surface exposure of the p-type InGaAs base layer according to the epi-structure and device structure. The deposition conditions such as deposition temperature, kinds of materials (silicon oxide, silicon nitride and aluminum oxide) and film thickness were not major variables to affect the device performance. The gain reduction was prevented by the BOE treatment before the passivation. A possible explanation of this behavior is that unstable non-stoichiometric surface states produced by excess In, Ga, or As after mesa etching are eliminated by BOE treatment and reduce the surface recombination sites.


Sign in / Sign up

Export Citation Format

Share Document