Determination of detecting system response function

Author(s):  
A. Proykova
Geophysics ◽  
1983 ◽  
Vol 48 (11) ◽  
pp. 1525-1535 ◽  
Author(s):  
Eugene A. Nosal

The vertical response function of induction logging tools is shown to be derivable from a power spectrum analysis of the measurement. The vertical response function is the one‐dimensional sequence of weights that characterizes how the tool combines the rock conductivities along the borehole to form an output called the apparent conductivity; it is the system impulse response. The value of knowing this function lies in the possible use of filter theory to aid in data processing and interpretation. Two general notions establish the framework for the analysis. The first is that logging is a linear, convolutional operation. Second, the earth’s conductivity profile forms a stochastic process. The probabilistic component is fleshed out by reasonably based assumptions about the occurrence of bed boundaries and nature of conductivity changes across them. Brought together, these tenets create a characterization of the conductivity sequence that is not a stationary process, but rather is intrinsic, as defined in the discipline of geostatistics. Such a process is described by a variogram, and it is increments of the process that are stationary. The connection between the power spectrum of the measurement and the system response function is made when the convolutional model is merged with the conductivity process. Some examples of induction log functions are shown using these ideas. The analysis is presented in general terms for possibly wider application.


2014 ◽  
Vol 596 ◽  
pp. 610-615
Author(s):  
Yu Chen ◽  
Qiang Li Luan ◽  
Zhang Wei Chen ◽  
Hui Nong He

Hydraulic shaker, equipment of simulating laboratory vibration environment, can accurately replicate the given power spectral density (PSD) and time history with an appropriate control algorithm. By studying method Hv estimator of frequency response function (FRF) estimation, a FRF identification strategy based on the Hv estimator is designed to increase the convergence rapidity and improve the system response function specialty. The system amplitude-frequency characteristics in some frequency points or frequency bands have large fluctuation. To solve this issue, a step-varying and frequency-sectioning iterative correction control algorithm is proposed for the control of 2-axial exciter PSD replication tests and the results show that the algorithm has a good effect on the control of hydraulic shaker, and can achieve reliable and high-precision PSD replication.


Author(s):  
Yahya Younesizadeh ◽  
Fayzollah Younesizadeh

In this work, we study the differential scattering cross-section (DSCS) in the first-order Born approximation. It is not difficult to show that the DSCS can be simplified in terms of the system response function. Also, the system response function has this property to be written in terms of the spectral function and the momentum distribution function in the impulse approximation (IA) scheme. Therefore, the DSCS in the IA scheme can be formulated in terms of the spectral function and the momentum distribution function. On the other hand, the DSCS for an electron off the [Formula: see text] and [Formula: see text] nuclei is calculated in the harmonic oscillator shell model. The obtained results are compared with the experimental data, too. The most important result derived from this study is that the calculated DSCS in terms of the spectral function has a high agreement with the experimental data at the low-energy transfer, while the obtained DSCS in terms of the momentum distribution function does not. Therefore, we conclude that the response of a many-fermion system to a probe particle in IA must be written in terms of the spectral function for getting accurate theoretical results in the field of collision. This is another important result of our study.


Manufacturing ◽  
2003 ◽  
Author(s):  
L. Shelley Xie ◽  
Agus Sudjianto

A new FEA based design approach of optimal robust fixture configuration is proposed in this paper, which employs a surrogate model through computer experiment to significantly reduce the intensive computing effort involving numerous FEA system response evaluations. The effects of the fixture variability to the workpiece performance variability are assessed through an efficient robustness evaluation method, First Order Reliability Method (FORM), based on the surrogate computer model. Not restricted to primary datum surface, this new approach enables simultaneous determination of robust locator/clamp locations and clamping forces for a deformable workpiece and thus captures interaction between locating and clamping. The effectiveness of this approach is illustrated though an application example. The results of robustness analysis reveal new information and suggest that the optimal solution resulted from deterministic optimization may not be the best solution when the design is subjected to variability.


2016 ◽  
Vol 83 (12) ◽  
Author(s):  
Pol D. Spanos ◽  
Alberto Di Matteo ◽  
Yezeng Cheng ◽  
Antonina Pirrotta ◽  
Jie Li

In this paper, an approximate semi-analytical approach is developed for determining the first-passage probability of randomly excited linear and lightly nonlinear oscillators endowed with fractional derivative elements. The amplitude of the system response is modeled as one-dimensional Markovian process by employing a combination of the stochastic averaging and the statistical linearization techniques. This leads to a backward Kolmogorov equation which governs the evolution of the survival probability of the oscillator. Next, an approximate solution of this equation is sought by resorting to a Galerkin scheme. Specifically, a convenient set of confluent hypergeometric functions, related to the corresponding linear oscillator with integer-order derivatives, is used as orthogonal basis for this scheme. Applications to the standard viscous linear and to nonlinear (Van der Pol and Duffing) oscillators are presented. Comparisons with pertinent Monte Carlo simulations demonstrate the reliability of the proposed approximate analytical solution.


1966 ◽  
Vol BME-13 (2) ◽  
pp. 65-70 ◽  
Author(s):  
R. A. Hannen ◽  
M. Kabrisky ◽  
C. R. Replogle ◽  
V. L. Hartzler ◽  
P. A. Roccaforte

Sign in / Sign up

Export Citation Format

Share Document