The probe particle scattering cross-section off the many-fermion systems in the impulse approximation

Author(s):  
Yahya Younesizadeh ◽  
Fayzollah Younesizadeh

In this work, we study the differential scattering cross-section (DSCS) in the first-order Born approximation. It is not difficult to show that the DSCS can be simplified in terms of the system response function. Also, the system response function has this property to be written in terms of the spectral function and the momentum distribution function in the impulse approximation (IA) scheme. Therefore, the DSCS in the IA scheme can be formulated in terms of the spectral function and the momentum distribution function. On the other hand, the DSCS for an electron off the [Formula: see text] and [Formula: see text] nuclei is calculated in the harmonic oscillator shell model. The obtained results are compared with the experimental data, too. The most important result derived from this study is that the calculated DSCS in terms of the spectral function has a high agreement with the experimental data at the low-energy transfer, while the obtained DSCS in terms of the momentum distribution function does not. Therefore, we conclude that the response of a many-fermion system to a probe particle in IA must be written in terms of the spectral function for getting accurate theoretical results in the field of collision. This is another important result of our study.

2013 ◽  
Vol 22 (02) ◽  
pp. 1350011
Author(s):  
M. MODARRES ◽  
Y. YOUNESIZADEH

In this work, the response functions (RFs) of the 4 He , 16 O and 40 Ca nuclei are calculated in the harmonic oscillator shell model (HOSM) and the impulse approximation (IA). First, the one-body momentum distribution and the one-body spectral functions for these nuclei are written in the HOSM configuration. Then, their RFs are calculated, in the two frameworks, namely the spectral and the momentum distribution functions, within the IA. Unlike our previous work, no further assumption is made to reduce the analytical complications. For each nucleus, it is shown that the (RF) evaluated using the corresponding spectral function has a sizable shift, with respect to the one calculated in terms of the momentum distribution function. It is concluded that for the heavier nuclei, this shift increases and reaches nearly to a constant value (approximately 62 MeV), i.e., similar to that of nuclear matter. It is discussed that in the nuclei with the few nucleons, the above shift can approximately be ignored. This result reduces the theoretical complication for the explanation of the ongoing deep inelastic scattering (DIS) experiments of 3 H or 3 H nucleus target in the Jefferson Laboratory. On the other hand, it is observed that in the heavier nuclei, the RF heights (width) decrease (increase), i.e., the comparison between the theoretical and the experimental electron nucleus scattering cross-section is more sensible for heavy nuclei rather than the light ones.


1980 ◽  
Vol 33 (6) ◽  
pp. 975 ◽  
Author(s):  
GN Haddad ◽  
RW Crompton

The transport coefficients υdr and D⊥/μ have been measured in mixtures of 0.5 % and 4 % hydrogen in argon. All measurements were made at 293 K. It is shown that for these mixtures the use of the solution of the Boltzmann equation based on the two-term Legendre expansion of the velocity distribution function introduces no significant error in the analysis of the transport data. All the experimental data have been predicted to within � 3.5 % using previously published cross section data.


2019 ◽  
Vol 34 (19) ◽  
pp. 1950150 ◽  
Author(s):  
Muhammad Ajaz ◽  
Irfan Khan ◽  
M. K. Suleymanov

The transverse momentum distribution of the differential production cross-sections of heavy flavored charm hadrons [Formula: see text], [Formula: see text] in pp collisions at 7 TeV are simulated. Predictions of DPMJETIII.17-1, HIJING1.383 and Sibyll2.3c are compared to the differential cross-section measurements of the LHCb experimental data presented in the region of [Formula: see text] and [Formula: see text], where the pp center of mass frame is used to measure the transverse momentum and rapidity. The models reproduce only some regions of [Formula: see text] and/or bins of [Formula: see text] but none of them predict completely all the [Formula: see text] bins over the entire [Formula: see text] range.


1984 ◽  
Vol 62 (3) ◽  
pp. 297-305 ◽  
Author(s):  
T. Hyodo ◽  
T. McMullen ◽  
A. T. Stewart

Two aspects of the momentum distribution function for positrons interacting with phonons and electrons in metals are studied. First, a simple approximation to the theoretical expression for the momentum distribution is found. It is used to clarify the meaning of the apparent mass in a Gaussian distribution introduced in the analysis of experimental data. Secondly, numerical evaluation of the theoretical momentum spectrum of the annihilating electron–positron pairs demonstrates the inadequacies of the Gaussian approximation. This leads to a new method of analysis of experimental data using the realistic distribution. This method allows one to obtain separately the positron quasiparticle mass and the positron–phonon coupling strength.


1992 ◽  
Vol 46 (21) ◽  
pp. 14313-14316 ◽  
Author(s):  
Rajiv R. P. Singh ◽  
Rodney L. Glenister

Sign in / Sign up

Export Citation Format

Share Document