Tradeoffs in low-power CMOS analog circuits for pixel detectors

Author(s):  
Eric A. Vittoz
2007 ◽  
Vol 2 (1) ◽  
pp. 22-28
Author(s):  
Alessandro Girardi ◽  
Sergio Bampi

This paper presents a transistor optimization methodology for low-power analog integrated CMOS circuits, relying on the physics-based gm/ID characteristics as a design optimization guide. Our custom layout tool LIT implements and uses the ACM MOS compact model in the optimization loop. The methodology is implemented for automation within LIT and exploits all design space through the simulated annealing optimization process, providing solutions close to optimum with a single technology-dependent curve and accurate expressions for transconductance and current valid in all operation regions. The compact model itself contributes to convergence and to optimized implementations, since it has analytic expressions which are continuous in all current regimes, including weak and moderate inversion. The advantage of constraining the optimization within a power budget is of great importance for low-power CMOS. As examples we show the optimization results obtained with LIT, resulting in significant power savings, for the design of a folded-cascode and a two-stage Miller operational amplifier.


Sensors ◽  
2019 ◽  
Vol 19 (24) ◽  
pp. 5459
Author(s):  
Wei Deng ◽  
Eric R. Fossum

This work fits the measured in-pixel source-follower noise in a CMOS Quanta Image Sensor (QIS) prototype chip using physics-based 1/f noise models, rather than the widely-used fitting model for analog designers. This paper discusses the different origins of 1/f noise in QIS devices and includes correlated double sampling (CDS). The modelling results based on the Hooge mobility fluctuation, which uses one adjustable parameter, match the experimental measurements, including the variation in noise from room temperature to –70 °C. This work provides useful information for the implementation of QIS in scientific applications and suggests that even lower read noise is attainable by further cooling and may be applicable to other CMOS analog circuits and CMOS image sensors.


Author(s):  
Sajad Nejadhasan ◽  
Fatemeh Zaheri ◽  
Ebrahim Abiri ◽  
Mohammad Reza Salehi

Sign in / Sign up

Export Citation Format

Share Document