Software for analysis of equine ground reaction force data

1986 ◽  
Vol 23 (3) ◽  
pp. 247-253 ◽  
Author(s):  
H.C. Schamhardt ◽  
H.W. Merkens ◽  
J.L.M.A. Lammertink
2006 ◽  
Vol 3 (4) ◽  
pp. 209-216 ◽  
Author(s):  
Pia Gustås ◽  
Christopher Johnston ◽  
Stig Drevemo

AbstractThe objective of the present study was to compare the hoof deceleration and ground reaction forces following impact on two different surfaces. Seven unshod Standardbreds were trotted by hand at 3.0–5.7 m s− 1 over a force plate covered by either of the two surfaces, sandpaper or a 1 cm layer of sand. Impact deceleration data were recorded from one triaxial accelerometer mounted on the fore- and hind hooves, respectively. Ground reaction force data were obtained synchronously from a force plate, sampled at 4.8 kHz. The differences between the two surfaces were studied by analysing representative deceleration and force variables for individual horses. The maximum horizontal peak deceleration and the loading rates of the vertical and the horizontal forces were significantly higher on sandpaper compared with the sand surface (P < 0.001). In addition, the initial vertical deceleration was significantly higher on sandpaper in the forelimb (P < 0.001). In conclusion, it was shown that the different qualities of the ground surface result in differences in the hoof-braking pattern, which may be of great importance for the strength of the distal horse limb also at slow speeds.


2021 ◽  
Vol 84 ◽  
pp. 137-140
Author(s):  
Ross A. Clark ◽  
Benjamin F. Mentiplay ◽  
Hong Han Tan ◽  
Louise Bechard ◽  
Emma Hough ◽  
...  

2007 ◽  
Vol 02 (02) ◽  
pp. 98-101 ◽  
Author(s):  
J. P. Punke ◽  
A. L. Speas ◽  
L. R. Reynolds ◽  
C. M. Andrews ◽  
S. C. Budsberg

SummaryThe differences between velocities and accelerations obtained from three and five photocells were examined when obtaining ground reaction force (GRF) data in dogs. Ground reaction force data was collected 259 times from 16 different dogs in two experimental phases. The first phase compared velocities and accelerations reported by the two systems based on trials accepted by the three photocell system. The second phase accepted trials based on data from five photocells. Three photocell data were calculated mathematically in the second phase in order to compare the values of both systems. The velocity and acceleration values obtained from each system were significantly different (at the hundredth of a meter per second). Differences in measured values did not result in acceptance of data by the three photocell system that would not have been acceptable with the five photocell system (false positives), but did result in rejection of acceptable data by the three photocell system (11% false negative rate). Given the small differences between the two systems, GRF data collected should not be significantly different, though the three photocell system is less efficient in gathering data due to the number of trials rejected as false negatives.


1986 ◽  
Vol 7 (5) ◽  
pp. 244-249 ◽  
Author(s):  
J. Hamill ◽  
K. M. Knutzen ◽  
B. T. Bates ◽  
G. Kirkpatrick

2002 ◽  
Vol 12 (1) ◽  
pp. 16-22 ◽  
Author(s):  
Andreas Hofmann ◽  
Marko Popovic ◽  
Hugh Herr

A three-dimensional numerical model of human standing is presented that reproduces the dynamics of simple swaying motions while in double-support. The human model is structurally realistic, having both trunk and two legs with segment lengths and mass distributions defined using human morphological data from the literature. In this investigation, model stability in standing is achieved through the application of a high-level reduced-order control system where stabilizing forces are applied to the model's trunk by virtual spring- damper elements. To achieve biologically realistic model dynamics, torso position and ground reaction force data measured on human subjects are used as demonstration data in a supervised learning strategy. Using Powell's method, the error between simulation data and measured human data is minimized by varying the virtual high-level force field. Once optimized, the model is shown to track torso position and ground reaction force data from human demonstrations. With only these limited demonstration data, the humanoid model sways in a biologically realistic manner. The model also reproduces the center-of-pressure trajectory beneath the foot, even though no error term for this is included in the optimization algorithm. This indicates that the error terms used (the ones for torso position and ground reaction force) are sufficient to compute the correct joint torques such that independent metrics, like center-of-pressure trajectory, are correct.


1993 ◽  
Vol 17 (2) ◽  
pp. 83-89 ◽  
Author(s):  
J. R. Engsberg ◽  
A. G. Lee ◽  
K. G. Tedford ◽  
J. A. Harder

The purpose of this investigation was to develop normative ground reaction force data for able-bodied (AB) and trans-tibial amputee (TTA) children during running. Two hundred AB (mean age 9.4 years, range 7–12) and 21 TTA (mean age 11.1 years, range 5–17) children ran (2.2 m/s±10%) over a force platform. Ground reaction force data were normalized, averaged within groups and plotted to produce force-time curves characterizing the different leg types (i.e. able-bodied, non-prosthetic and prosthetic). In addition, discrete variables characterizing the leg type differences were determined. One way ANOVA determined significant differences between variables and a TukeyB Post Hoc analysis defined which variables were significantly different (p < 0.05). Results generally indicated differences between the three leg types with the non-prosthetic leg indicating greater forces than the prosthetic and AB legs. The results of this investigation provide normative ground reaction force data for both AB and TTA children during running and can be used for comparison with other groups of children.


1993 ◽  
Vol 9 (4) ◽  
pp. 306-314 ◽  
Author(s):  
Ewald M. Hennig ◽  
Thomas L. Milani ◽  
Mario A. Lafortune

Ground reaction force data and tibial accelerations from a skin-mounted transducer were collected during rearfoot running at 3.3 m/s across a force platform. Five repetitive trials from 27 subjects in each of 19 different footwear conditions were evaluated. Ground reaction force as well as tibial acceleration parameters were found to be useful for the evaluation of the cushioning properties of different athletic footwear. The good prediction of tibial accelerations by the maximum vertical force rate toward the initial force peak (r2 = .95) suggests that the use of a force platform is sufficient for the estimation of shock-absorbing properties of sport shoes. If an even higher prediction accuracy is required a regression equation with two variables (maximum force rate, median power frequency) may be used (r2 = .97). To evaluate the influence of footwear on the shock traveling through the body, a good prediction of peak tibial accelerations can be achieved from force platform measurements.


Sign in / Sign up

Export Citation Format

Share Document