scholarly journals Normative ground reaction force data for able-bodied and trans-tibial amputee children during running

1993 ◽  
Vol 17 (2) ◽  
pp. 83-89 ◽  
Author(s):  
J. R. Engsberg ◽  
A. G. Lee ◽  
K. G. Tedford ◽  
J. A. Harder

The purpose of this investigation was to develop normative ground reaction force data for able-bodied (AB) and trans-tibial amputee (TTA) children during running. Two hundred AB (mean age 9.4 years, range 7–12) and 21 TTA (mean age 11.1 years, range 5–17) children ran (2.2 m/s±10%) over a force platform. Ground reaction force data were normalized, averaged within groups and plotted to produce force-time curves characterizing the different leg types (i.e. able-bodied, non-prosthetic and prosthetic). In addition, discrete variables characterizing the leg type differences were determined. One way ANOVA determined significant differences between variables and a TukeyB Post Hoc analysis defined which variables were significantly different (p < 0.05). Results generally indicated differences between the three leg types with the non-prosthetic leg indicating greater forces than the prosthetic and AB legs. The results of this investigation provide normative ground reaction force data for both AB and TTA children during running and can be used for comparison with other groups of children.

1993 ◽  
Vol 9 (4) ◽  
pp. 306-314 ◽  
Author(s):  
Ewald M. Hennig ◽  
Thomas L. Milani ◽  
Mario A. Lafortune

Ground reaction force data and tibial accelerations from a skin-mounted transducer were collected during rearfoot running at 3.3 m/s across a force platform. Five repetitive trials from 27 subjects in each of 19 different footwear conditions were evaluated. Ground reaction force as well as tibial acceleration parameters were found to be useful for the evaluation of the cushioning properties of different athletic footwear. The good prediction of tibial accelerations by the maximum vertical force rate toward the initial force peak (r2 = .95) suggests that the use of a force platform is sufficient for the estimation of shock-absorbing properties of sport shoes. If an even higher prediction accuracy is required a regression equation with two variables (maximum force rate, median power frequency) may be used (r2 = .97). To evaluate the influence of footwear on the shock traveling through the body, a good prediction of peak tibial accelerations can be achieved from force platform measurements.


1988 ◽  
Vol 4 (1) ◽  
pp. 59-67 ◽  
Author(s):  
Bruce Elliott ◽  
J. Robert Grove ◽  
Barry Gibson

Eight international baseball pitchers were filmed in a laboratory while throwing from a pitching rubber attached to a Kistler force platform. Following a warm-up, all subjects threw fastballs (FB) until two strike pitches were assessed by an umpire positioned behind the catcher for both wind-up and set pitching techniques. Subjects then followed the same procedures for curveball pitches (CB). Both vertical (Z) and horizontal (Y) ground reaction force (GRF) data were recorded. A shutter correlation pulse was encoded so the temporal data from the film could be synchronized with the kinetic data from the force platform. Analysis of variance was used to analyze differences in force data at selected points in both pitching actions for both techniques. Vertical and horizontal GRFs increased from the first balance position to maximum levels at the cocked position for both techniques. Nonsignificant changes in GRF then occurred between the cocked position and front-foot landing. The Z GRFs were similar throughout the pitching action but higher in magnitude for the CB compared to the FB. Mean resultant forces were similar for the three fastest FB pitchers when compared to the three slowest pitchers. However, the slower group produced their peak resultant force earlier in the action, thus reducing the ability to drive over a stabilized front leg.


2019 ◽  
Vol 126 (5) ◽  
pp. 1315-1325 ◽  
Author(s):  
Andrew B. Udofa ◽  
Kenneth P. Clark ◽  
Laurence J. Ryan ◽  
Peter G. Weyand

Although running shoes alter foot-ground reaction forces, particularly during impact, how they do so is incompletely understood. Here, we hypothesized that footwear effects on running ground reaction force-time patterns can be accurately predicted from the motion of two components of the body’s mass (mb): the contacting lower-limb (m1 = 0.08mb) and the remainder (m2 = 0.92mb). Simultaneous motion and vertical ground reaction force-time data were acquired at 1,000 Hz from eight uninstructed subjects running on a force-instrumented treadmill at 4.0 and 7.0 m/s under four footwear conditions: barefoot, minimal sole, thin sole, and thick sole. Vertical ground reaction force-time patterns were generated from the two-mass model using body mass and footfall-specific measures of contact time, aerial time, and lower-limb impact deceleration. Model force-time patterns generated using the empirical inputs acquired for each footfall matched the measured patterns closely across the four footwear conditions at both protocol speeds ( r2 = 0.96 ± 0.004; root mean squared error  = 0.17 ± 0.01 body-weight units; n = 275 total footfalls). Foot landing angles (θF) were inversely related to footwear thickness; more positive or plantar-flexed landing angles coincided with longer-impact durations and force-time patterns lacking distinct rising-edge force peaks. Our results support three conclusions: 1) running ground reaction force-time patterns across footwear conditions can be accurately predicted using our two-mass, two-impulse model, 2) impact forces, regardless of foot strike mechanics, can be accurately quantified from lower-limb motion and a fixed anatomical mass (0.08mb), and 3) runners maintain similar loading rates (ΔFvertical/Δtime) across footwear conditions by altering foot strike angle to regulate the duration of impact. NEW & NOTEWORTHY Here, we validate a two-mass, two-impulse model of running vertical ground reaction forces across four footwear thickness conditions (barefoot, minimal, thin, thick). Our model allows the impact portion of the impulse to be extracted from measured total ground reaction force-time patterns using motion data from the ankle. The gait adjustments observed across footwear conditions revealed that runners maintained similar loading rates across footwear conditions by altering foot strike angles to regulate the duration of impact.


2006 ◽  
Vol 3 (4) ◽  
pp. 209-216 ◽  
Author(s):  
Pia Gustås ◽  
Christopher Johnston ◽  
Stig Drevemo

AbstractThe objective of the present study was to compare the hoof deceleration and ground reaction forces following impact on two different surfaces. Seven unshod Standardbreds were trotted by hand at 3.0–5.7 m s− 1 over a force plate covered by either of the two surfaces, sandpaper or a 1 cm layer of sand. Impact deceleration data were recorded from one triaxial accelerometer mounted on the fore- and hind hooves, respectively. Ground reaction force data were obtained synchronously from a force plate, sampled at 4.8 kHz. The differences between the two surfaces were studied by analysing representative deceleration and force variables for individual horses. The maximum horizontal peak deceleration and the loading rates of the vertical and the horizontal forces were significantly higher on sandpaper compared with the sand surface (P < 0.001). In addition, the initial vertical deceleration was significantly higher on sandpaper in the forelimb (P < 0.001). In conclusion, it was shown that the different qualities of the ground surface result in differences in the hoof-braking pattern, which may be of great importance for the strength of the distal horse limb also at slow speeds.


2021 ◽  
Vol 84 ◽  
pp. 137-140
Author(s):  
Ross A. Clark ◽  
Benjamin F. Mentiplay ◽  
Hong Han Tan ◽  
Louise Bechard ◽  
Emma Hough ◽  
...  

2007 ◽  
Vol 02 (02) ◽  
pp. 98-101 ◽  
Author(s):  
J. P. Punke ◽  
A. L. Speas ◽  
L. R. Reynolds ◽  
C. M. Andrews ◽  
S. C. Budsberg

SummaryThe differences between velocities and accelerations obtained from three and five photocells were examined when obtaining ground reaction force (GRF) data in dogs. Ground reaction force data was collected 259 times from 16 different dogs in two experimental phases. The first phase compared velocities and accelerations reported by the two systems based on trials accepted by the three photocell system. The second phase accepted trials based on data from five photocells. Three photocell data were calculated mathematically in the second phase in order to compare the values of both systems. The velocity and acceleration values obtained from each system were significantly different (at the hundredth of a meter per second). Differences in measured values did not result in acceptance of data by the three photocell system that would not have been acceptable with the five photocell system (false positives), but did result in rejection of acceptable data by the three photocell system (11% false negative rate). Given the small differences between the two systems, GRF data collected should not be significantly different, though the three photocell system is less efficient in gathering data due to the number of trials rejected as false negatives.


Sign in / Sign up

Export Citation Format

Share Document