Ground reaction force and hoof deceleration patterns on two different surfaces at the trot

2006 ◽  
Vol 3 (4) ◽  
pp. 209-216 ◽  
Author(s):  
Pia Gustås ◽  
Christopher Johnston ◽  
Stig Drevemo

AbstractThe objective of the present study was to compare the hoof deceleration and ground reaction forces following impact on two different surfaces. Seven unshod Standardbreds were trotted by hand at 3.0–5.7 m s− 1 over a force plate covered by either of the two surfaces, sandpaper or a 1 cm layer of sand. Impact deceleration data were recorded from one triaxial accelerometer mounted on the fore- and hind hooves, respectively. Ground reaction force data were obtained synchronously from a force plate, sampled at 4.8 kHz. The differences between the two surfaces were studied by analysing representative deceleration and force variables for individual horses. The maximum horizontal peak deceleration and the loading rates of the vertical and the horizontal forces were significantly higher on sandpaper compared with the sand surface (P < 0.001). In addition, the initial vertical deceleration was significantly higher on sandpaper in the forelimb (P < 0.001). In conclusion, it was shown that the different qualities of the ground surface result in differences in the hoof-braking pattern, which may be of great importance for the strength of the distal horse limb also at slow speeds.

2007 ◽  
Vol 23 (3) ◽  
pp. 180-189 ◽  
Author(s):  
Niell G. Elvin ◽  
Alex A. Elvin ◽  
Steven P. Arnoczky

Modern electronics allow for the unobtrusive measurement of accelerations outside the laboratory using wireless sensor nodes. The ability to accurately measure joint accelerations under unrestricted conditions, and to correlate them with jump height and landing force, could provide important data to better understand joint mechanics subject to real-life conditions. This study investigates the correlation between peak vertical ground reaction forces, as measured by a force plate, and tibial axial accelerations during free vertical jumping. The jump heights calculated from force-plate data and accelerometer measurements are also compared. For six male subjects participating in this study, the average coefficient of determination between peak ground reaction force and peak tibial axial acceleration is found to be 0.81. The coefficient of determination between jump height calculated using force plate and accelerometer data is 0.88. Data show that the landing forces could be as high as 8 body weights of the jumper. The measured peak tibial accelerations ranged up to 42 g. Jump heights calculated from force plate and accelerometer sensors data differed by less than 2.5 cm. It is found that both impact accelerations and landing forces are only weakly correlated with jump height (the average coefficient of determination is 0.12). This study shows that unobtrusive accelerometers can be used to determine the ground reaction forces experienced in a jump landing. Whereas the device also permitted an accurate determination of jump height, there was no correlation between peak ground reaction force and jump height.


Author(s):  
Jocelyn E. Arnett ◽  
Cameron D. Addie ◽  
Ludmila M. Cosio-Lima ◽  
Lee E. Brown

Background: Landing is a common movement that occurs in many sports. Barefoot research has gained popularity in examining how shoes alter natural movements. However, it is unknown how a single leg landing under barefoot conditions, as well as landing height, affects ground reaction forces (GRF). Objective: The purpose of this research was to examine the differences in GRF during a single leg landing under barefoot and shod conditions from various heights. Methods: Sixteen female Division II collegiate athletes, 8 basketball (age: 19.88 ± 0.64 yrs; height: 1.77 ± 0.09 m; mass: 75.76 ± 12.97 kg) and 8 volleyball (age: 20.00 ± 1.07 yrs; height: 1.74 ± 0.08 m; mass: 72.41 ± 5.41 kg), performed single leg landings from 12, 18, 24, and 30 inches barefoot and shod. An AMTI AccuGait force plate was used to record GRF. A 2 (condition) x 4 (box height) x 2 (sport) repeated measures ANOVA was performed to determine any GRF differences. Results: There were no significant three way or two-way interactions (p > 0.05). There was also no main effect for sport (p > 0.05). There were main effects for footwear and box height (p = 0.000) where shod (2295.121 ± 66.025 N) had greater impact than barefoot (2090.233 ± 62.684 N). Conclusions: Single leg barefoot landings resulted in less vertical GRF than shod landings. This could be due to increased flexion at the joints which aids in force absorption.


1995 ◽  
Vol 19 (1) ◽  
pp. 37-45 ◽  
Author(s):  
A. P. Arya ◽  
A. Lees ◽  
H. C. Nerula ◽  
L. Klenerman

The Jaipur prosthetic foot was developed in India in response to specific socio-cultural needs of Indian amputees. It is being used extensively in India and several other developing countries. Its claim of being a cheaper and satisfactory alternative to other prosthetic feet has not been investigated biomechanically. The present study was undertaken to compare its biomechanical properties with the SACH and Seattle feet, using ground reaction forces. Three trans-tibial amputees participated in the experiment which measured the ground reaction force data using a Kistler force plate. Subject's normal foot was used as a reference. Six variables from the vertical and anteroposterior components of ground reaction forces were quantified, their statistical analysis showed that the normal foot generates significantly larger ground reaction forces than the prosthetic foot. The shock absortion capacity of the SACH foot was found to be better when compared with the other two feet, while the Jaipur foot allowed a more natural gait and was closer in performance to the normal foot. None of the prostheses significantly influenced the locomotor style of the amputees.


2011 ◽  
Vol 24 (06) ◽  
pp. 435-444 ◽  
Author(s):  
B. Nordquist ◽  
J. Fischer ◽  
S. Y. Kim ◽  
S. M. Stover ◽  
T. Garcia-Nolen ◽  
...  

SummaryObjectives: To document the contributions of trial repetition, limb side, and intraday and inter-week measurements on variation in vertical and craniocaudal ground reaction force data.Methods: Following habituation, force and time data were collected for all four limbs of seven Labrador Retrievers during sets of five valid trot trials. Each set was performed twice daily (morning and afternoon), every seven days for three consecutive weeks. A repeated measures analysis of variance was used to determine the effects of limb, trial, intraday, and inter-week factors on ground reaction force data for the thoracic and pelvic limbs.Results: Of the four factors evaluated, variation due to trial repetition had the largest magnitude of effect on ground reaction forces. Trial within a set of data had an effect on all craniocaudal, but not vertical, ground reaction force variables studied, for the thoracic limbs. The first of five trials was often different from later trials. Some thoracic limb and pelvic limb variables were different between weeks. A limb side difference was only apparent for pelvic limb vertical ground reaction force data. Only pelvic limb craniocaudal braking variables were different between sets within a day.Discussion and clinical significance: When controlling for speed, handler, gait, weight and dog breed, variation in ground reaction forces mainly arise from trial repetition and inter-week data collection. When using vertical peak force and impulse to evaluate treatment, trial repetition and inter-week data collection should have minimal effect of the data.


2009 ◽  
Vol 12 (01) ◽  
pp. 45-52 ◽  
Author(s):  
Nima Jamshidi ◽  
Mostafa Rostami ◽  
Siamak Najarian ◽  
Mohammad Bagher Menhaj ◽  
Mohammad Saadatnia ◽  
...  

Background: This pilot study aimed to assess quantitative differences between normal and steppage gait by analyzing force plate data. Materials and Methods: We studied 25 subjects with drop foot, who were treated in the orthopedic center for drop foot brace. Twenty healthy students were included as a control group. There were no differences in the age, weight, height, and body mass index between the patients and the controls (p > 0.05). They walked at self-selected speed with a mean of 10 trials (+2) to collect their ground reaction forces data by force plate. Results: There were no significant differences between the groups in antero-posterior component of ground reaction force (p > 0.05). There was significant relationship between the time parameters in vertical and medio-lateral components of ground reaction forces (p < 0.05). We have found that the medio-lateral impulse in the patients group is negative (p < 0.05), which means instability in patients' gait. Conclusion: The result of this research reveals that the analysis of ground reaction force quantitatively describes steppage gait. The average stance time among patients is longer than control group. Further work with a larger database of subjects is required to confirm our findings.


2017 ◽  
Vol 30 (01) ◽  
pp. 54-58 ◽  
Author(s):  
Gabby Sandberg ◽  
Sarah Robb ◽  
Steven Budsberg ◽  
Nicola Volstad

SummaryObjective: To compare the variability of symmetry indices within and between days when using one and two force plates for data collection.Animals: Seventeen healthy client-owned adult dogs.Methods: Vertical ground reaction force data were collected in a crossover study design, with four collection sessions on two consecutive days, and then two weeks apart (days 1, 2, 15, and 16) using both 1-plate and 2-plate collection methods. Symmetry indices were calculated for limb pairs using two standard equations (SI1 and SI2). Repeated measures analysis was used to compare symmetry indices data between plate systems and days. Significance was set at p <0.05.Results: There were no significant differences between plate systems for SI1 and SI2. There were no significant differences between data collected on different days and no significant interaction effects between variables. Symmetry indices were consistently larger for ground reaction forces calculated from non-consecutive footfalls.Conclusions: The use of two force plate systems will minimize variance caused by trial repetition and paired limb variation. When comparing SI1 to SI2, results were not significantly different. However, there were consistently higher mean values for SI1 compared with SI2 and symmetry indices were consistently larger for 1-plate systems compared to 2-plate systems for both symmetry indices.


2001 ◽  
Vol 17 (1) ◽  
pp. 77-83 ◽  
Author(s):  
John H. Challis

This study examined the influence of force plate targeting, via stride length adjustments, on the magnitude and consistency of ground reaction force and segment angle profiles of the stance phase of human running. Seven male subjects (height, 1.77 m ± 0.081; mass, 72.4 kg ± 7.52; age range, 23 to 32 years) were asked to run at a mean velocity of 3.2 m · s–1 under three conditions (normal, short, and long strides). Four trials were completed for each condition. For each trial, the ground reaction forces were measured and the orientations of the foot, shank, and thigh computed. There were no statistically significant differences (p > .05) between the coefficients of variation of ground reaction force and segment angle profiles under the three conditions, so these profiles were produced consistently. Peak active vertical ground reaction forces, their timings, and segment angles at foot off were not significantly different across conditions. In contrast, significant differences between conditions were found for peak vertical impact forces and their timings, and for the three lower limb segment angles at the start of force plate contact. These results have implications for human gait studies, which require subjects to target the force plate. Targeting may be acceptable depending on the variables to be analyzed.


2019 ◽  
Vol 126 (5) ◽  
pp. 1315-1325 ◽  
Author(s):  
Andrew B. Udofa ◽  
Kenneth P. Clark ◽  
Laurence J. Ryan ◽  
Peter G. Weyand

Although running shoes alter foot-ground reaction forces, particularly during impact, how they do so is incompletely understood. Here, we hypothesized that footwear effects on running ground reaction force-time patterns can be accurately predicted from the motion of two components of the body’s mass (mb): the contacting lower-limb (m1 = 0.08mb) and the remainder (m2 = 0.92mb). Simultaneous motion and vertical ground reaction force-time data were acquired at 1,000 Hz from eight uninstructed subjects running on a force-instrumented treadmill at 4.0 and 7.0 m/s under four footwear conditions: barefoot, minimal sole, thin sole, and thick sole. Vertical ground reaction force-time patterns were generated from the two-mass model using body mass and footfall-specific measures of contact time, aerial time, and lower-limb impact deceleration. Model force-time patterns generated using the empirical inputs acquired for each footfall matched the measured patterns closely across the four footwear conditions at both protocol speeds ( r2 = 0.96 ± 0.004; root mean squared error  = 0.17 ± 0.01 body-weight units; n = 275 total footfalls). Foot landing angles (θF) were inversely related to footwear thickness; more positive or plantar-flexed landing angles coincided with longer-impact durations and force-time patterns lacking distinct rising-edge force peaks. Our results support three conclusions: 1) running ground reaction force-time patterns across footwear conditions can be accurately predicted using our two-mass, two-impulse model, 2) impact forces, regardless of foot strike mechanics, can be accurately quantified from lower-limb motion and a fixed anatomical mass (0.08mb), and 3) runners maintain similar loading rates (ΔFvertical/Δtime) across footwear conditions by altering foot strike angle to regulate the duration of impact. NEW & NOTEWORTHY Here, we validate a two-mass, two-impulse model of running vertical ground reaction forces across four footwear thickness conditions (barefoot, minimal, thin, thick). Our model allows the impact portion of the impulse to be extracted from measured total ground reaction force-time patterns using motion data from the ankle. The gait adjustments observed across footwear conditions revealed that runners maintained similar loading rates across footwear conditions by altering foot strike angles to regulate the duration of impact.


2007 ◽  
Vol 02 (02) ◽  
pp. 98-101 ◽  
Author(s):  
J. P. Punke ◽  
A. L. Speas ◽  
L. R. Reynolds ◽  
C. M. Andrews ◽  
S. C. Budsberg

SummaryThe differences between velocities and accelerations obtained from three and five photocells were examined when obtaining ground reaction force (GRF) data in dogs. Ground reaction force data was collected 259 times from 16 different dogs in two experimental phases. The first phase compared velocities and accelerations reported by the two systems based on trials accepted by the three photocell system. The second phase accepted trials based on data from five photocells. Three photocell data were calculated mathematically in the second phase in order to compare the values of both systems. The velocity and acceleration values obtained from each system were significantly different (at the hundredth of a meter per second). Differences in measured values did not result in acceptance of data by the three photocell system that would not have been acceptable with the five photocell system (false positives), but did result in rejection of acceptable data by the three photocell system (11% false negative rate). Given the small differences between the two systems, GRF data collected should not be significantly different, though the three photocell system is less efficient in gathering data due to the number of trials rejected as false negatives.


1989 ◽  
Vol 1 (1) ◽  
pp. 45-53 ◽  
Author(s):  
Nancy L. Greer ◽  
Joseph Hamill ◽  
Kevin R. Campbell

Ground reaction force patterns during walking were observed in 18 children 3 and 4 years of age. The children walked barefoot at a self-chosen walking pace. Selected variables representing the vertical, anteroposterior, and mediolateral force components were evaluated. The results indicated that children in this age range contact the ground with greater vertical force measures relative to body mass than do adults. In addition, the minimum vertical force was lower, the transition from braking to propulsion occurred earlier, and the mediolateral force excursions were higher than typically found in adults. When the children were divided into groups on the basis of sex, differences were observed between those groups. The boys exhibited a greater difference in the vertical peak forces, a lower minimum force, a greater braking force, and a higher mediolateral force excursion value. The results indicated that children display a different ground reaction force pattern than do adults and that differences between boys and girls may be observed as early as ages 3 and 4 years.


Sign in / Sign up

Export Citation Format

Share Document