Isolation and characterization of Alzheimer's disease βA4 amyloid precursor protein from human brain

1990 ◽  
Vol 11 (3) ◽  
pp. 310
2020 ◽  
Vol 21 (18) ◽  
pp. 6564 ◽  
Author(s):  
Hans W. Klafki ◽  
Petra Rieper ◽  
Anja Matzen ◽  
Silvia Zampar ◽  
Oliver Wirths ◽  
...  

The ratio of amyloid precursor protein (APP)669–711 (Aβ−3–40)/Aβ1–42 in blood plasma was reported to represent a novel Alzheimer’s disease biomarker. Here, we describe the characterization of two antibodies against the N-terminus of Aβ−3–x and the development and “fit-for-purpose” technical validation of a sandwich immunoassay for the measurement of Aβ−3–40. Antibody selectivity was assessed by capillary isoelectric focusing immunoassay, Western blot analysis, and immunohistochemistry. The analytical validation addressed assay range, repeatability, specificity, between-run variability, impact of pre-analytical sample handling procedures, assay interference, and analytical spike recoveries. Blood plasma was analyzed after Aβ immunoprecipitation by a two-step immunoassay procedure. Both monoclonal antibodies detected Aβ−3–40 with no appreciable cross reactivity with Aβ1–40 or N-terminally truncated Aβ variants. However, the amyloid precursor protein was also recognized. The immunoassay showed high selectivity for Aβ−3–40 with a quantitative assay range of 22 pg/mL–7.5 ng/mL. Acceptable intermediate imprecision of the complete two-step immunoassay was reached after normalization. In a small clinical sample, the measured Aβ42/Aβ−3–40 and Aβ42/Aβ40 ratios were lower in patients with dementia of the Alzheimer’s type than in other dementias. In summary, the methodological groundwork for further optimization and future studies addressing the Aβ42/Aβ−3–40 ratio as a novel biomarker candidate for Alzheimer’s disease has been set.


2003 ◽  
Vol 70 ◽  
pp. 213-220 ◽  
Author(s):  
Gerald Koelsch ◽  
Robert T. Turner ◽  
Lin Hong ◽  
Arun K. Ghosh ◽  
Jordan Tang

Mempasin 2, a ϐ-secretase, is the membrane-anchored aspartic protease that initiates the cleavage of amyloid precursor protein leading to the production of ϐ-amyloid and the onset of Alzheimer's disease. Thus memapsin 2 is a major therapeutic target for the development of inhibitor drugs for the disease. Many biochemical tools, such as the specificity and crystal structure, have been established and have led to the design of potent and relatively small transition-state inhibitors. Although developing a clinically viable mempasin 2 inhibitor remains challenging, progress to date renders hope that memapsin 2 inhibitors may ultimately be useful for therapeutic reduction of ϐ-amyloid.


2020 ◽  
Vol 21 (12) ◽  
pp. 1164-1173
Author(s):  
Siju Ellickal Narayanan ◽  
Nikhila Sekhar ◽  
Rajalakshmi Ganesan Rajamma ◽  
Akash Marathakam ◽  
Abdullah Al Mamun ◽  
...  

: Alzheimer’s disease (AD) is a progressive brain disorder and one of the most common causes of dementia and death. AD can be of two types; early-onset and late-onset, where late-onset AD occurs sporadically while early-onset AD results from a mutation in any of the three genes that include amyloid precursor protein (APP), presenilin 1 (PSEN 1) and presenilin 2 (PSEN 2). Biologically, AD is defined by the presence of the distinct neuropathological profile that consists of the extracellular β-amyloid (Aβ) deposition in the form of diffuse neuritic plaques, intraneuronal neurofibrillary tangles (NFTs) and neuropil threads; in dystrophic neuritis, consisting of aggregated hyperphosphorylated tau protein. Elevated levels of (Aβ), total tau (t-tau) and phosphorylated tau (ptau) in cerebrospinal fluid (CSF) have become an important biomarker for the identification of this neurodegenerative disease. The aggregation of Aβ peptide derived from amyloid precursor protein initiates a series of events that involve inflammation, tau hyperphosphorylation and its deposition, in addition to synaptic dysfunction and neurodegeneration, ultimately resulting in dementia. The current review focuses on the role of proteomes in the pathogenesis of AD.


2019 ◽  
Vol 294 (25) ◽  
pp. 9760-9770 ◽  
Author(s):  
Shuyu Liu ◽  
Fujiko Ando ◽  
Yu Fujita ◽  
Junjun Liu ◽  
Tomoji Maeda ◽  
...  

Inhibition of angiotensin-converting enzyme (ACE) is a strategy used worldwide for managing hypertension. In addition to converting angiotensin I to angiotensin II, ACE also converts neurotoxic β-amyloid protein 42 (Aβ42) to Aβ40. Because of its neurotoxicity, Aβ42 is believed to play a causative role in the development of Alzheimer's disease (AD), whereas Aβ40 has neuroprotective effects against Aβ42 aggregation and also against metal-induced oxidative damage. Whether ACE inhibition enhances Aβ42 aggregation or impairs human cognitive ability are very important issues for preventing AD onset and for optimal hypertension management. In an 8-year longitudinal study, we found here that the mean intelligence quotient of male, but not female, hypertensive patients taking ACE inhibitors declined more rapidly than that of others taking no ACE inhibitors. Moreover, the sera of all AD patients exhibited a decrease in Aβ42-to-Aβ40–converting activity compared with sera from age-matched healthy individuals. Using human amyloid precursor protein transgenic mice, we found that a clinical dose of an ACE inhibitor was sufficient to increase brain amyloid deposition. We also generated human amyloid precursor protein/ACE+/− mice and found that a decrease in ACE levels promoted Aβ42 deposition and increased the number of apoptotic neurons. These results suggest that inhibition of ACE activity is a risk factor for impaired human cognition and for triggering AD onset.


Neuroscience ◽  
2020 ◽  
Vol 424 ◽  
pp. 184-202
Author(s):  
Rosemary A. Bamford ◽  
Jocelyn Widagdo ◽  
Natsuki Takamura ◽  
Madeline Eve ◽  
Victor Anggono ◽  
...  

2020 ◽  
pp. 1-16
Author(s):  
Margaret Ryan ◽  
Valerie T.Y. Tan ◽  
Nasya Thompson ◽  
Diane Guévremont ◽  
Bruce G. Mockett ◽  
...  

Background: Secreted amyloid precursor protein-alpha (sAPPα) can enhance memory and is neurotrophic and neuroprotective across a range of disease-associated insults, including amyloid-β toxicity. In a significant step toward validating sAPPα as a therapeutic for Alzheimer’s disease (AD), we demonstrated that long-term overexpression of human sAPPα (for 8 months) in a mouse model of amyloidosis (APP/PS1) could prevent the behavioral and electrophysiological deficits that develop in these mice. Objective: To explore the underlying molecular mechanisms responsible for the significant physiological and behavioral improvements observed in sAPPα-treated APP/PS1 mice. Methods: We assessed the long-term effects on the hippocampal transcriptome following continuous lentiviral delivery of sAPPα or empty-vector to male APP/PS1 mice and wild-type controls using Affymetrix Mouse Transcriptome Assays. Data analysis was carried out within the Affymetrix Transcriptome Analysis Console and an integrated analysis of the resulting transcriptomic data was performed with Ingenuity Pathway analysis (IPA). Results: Mouse transcriptome assays revealed expected AD-associated gene expression changes in empty-vector APP/PS1 mice, providing validation of the assays used for the analysis. By contrast, there were specific sAPPα-associated gene expression profiles which included increases in key neuroprotective genes such as Decorin, betaine-GABA transporter, and protocadherin beta-5, subsequently validated by qRT-PCR. An integrated biological pathways analysis highlighted regulation of GABA receptor signaling, cell survival, and inflammatory responses. Furthermore, upstream gene regulatory analysis implicated sAPPα activation of Interleukin-4, which can counteract inflammatory changes in AD. Conclusion: This study identified key molecular processes that likely underpin the long-term neuroprotective and therapeutic effects of increasing sAPPα levels in vivo


Sign in / Sign up

Export Citation Format

Share Document